Skip to main content
Log in

Tailoring dielectric properties of natural rubber/millable polyurethane elastomer blends by filler embedding

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The dielectric features of Natural Rubber/Millable Polyurethane elastomer (NR/MPU) blends have been effectively modulated by embedding them with nanofillers. The characteristics of the modified blends such as capacitance, dielectric permittivity, loss factor, volume resistivity, and electrical impedance have been studied, within a frequency range of 1 kHz to 10 MHz, with respect to filler loading, polymer–filler interactions, and macromolecular segmental mobility. The improvement in the dielectric properties of the systems with filler loading has been attributed to the development of micro-capacitance structures in the NR/MPU matrix which favours relaxation processes depending on the interfacial polarisation and segmental mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Suzana SJ, Vojislav J, Gordana M, Sandra K, Milena MC (2011) Nanocomposites based on silica-reinforced ethylene–propylene–diene–monomer/acrylonitrile–butadiene rubber blends. Compos Part B 42:1244–1250

    Article  Google Scholar 

  2. Shudi L, Zhonghui S, Hao P, Xin Z, Yang S, Yuan-Hua L, Ce-Wen N (2017) A surface-modified TiO2 nanorod array/P(VDF–HFP) dielectric capacitor with ultra high energy density and efficiency. J Mater Chem C 5:12777–12784

    Article  Google Scholar 

  3. Deepalekshmi P, Kishor KS, Yves G, Qipeng G, Sabu T (2014) Carbon nanotube based elastomer composites—an approach towards multifunctional materials. J Mater Chem C 2:8446–8485

    Article  Google Scholar 

  4. Kishor KS, Deepalekshmi P, Sabu T, Yves G (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39:749–780

    Article  Google Scholar 

  5. Kenichi H, Yasuhiro T (2016) Poly (methyl methacrylate)-grafted ZnO nanocomposites with variable dielectric constants by UV light irradiation. J Mater Chem C 4:3640–3645

    Article  Google Scholar 

  6. Deepalekshmi P, Kishor KS, Michael S, Qipeng G, Sabu T (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343–10353

    Article  Google Scholar 

  7. Naohiro T, Ichiroh T (2014) Electrochemical and electromechanical properties of carbon black/carbon fiber composite polymer actuator with higher performance than single-walled carbon nanotube polymer actuator. Electrochim Acta 123:340–345

    Article  Google Scholar 

  8. Xian-ling X, Chao-jin Y, Jing-hui Y, Ting H, Nan Z, Yong W, Zuo-wan Z (2017) Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide. Compos Part B 109:91–100

    Article  Google Scholar 

  9. Ladhar A, Arous M, Kaddami H, Raihane M, Kallel A, Graca MPF, Costa LC (2015) Ionic hopping conductivity in potential batteries separator based on natural rubber–nanocellulose green nanocomposites. J Mol Liq 211:792–802

    Article  CAS  Google Scholar 

  10. Shanmugharaj AM, Bae JH, Kwang YL, Woo HN, Se HL, Sung HR (2007) Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos Sci Technol 67:1813–1822

    Article  CAS  Google Scholar 

  11. Johns J, Nakason CJ (2011) Dielectric properties of natural rubber/chitosan blends: effects of blend ratio and compatibilization. Non Cryst Solids 357:1816–1821

    Article  CAS  Google Scholar 

  12. Bouthegourd E, Rajisha KR, Kalarical N, Marc J, Thomas S (2011) Natural rubber latex/potato starch nanocrystal nanocomposites: correlation morphology/electrical properties. Mater Lett 65:3615–3617

    Article  CAS  Google Scholar 

  13. Aguilar-Bolados H, Lopez-Manchado MA, Brasero J, Avil F, Yazdani-Pedram M (2016) Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Compos Part B 87:350–356

    Article  CAS  Google Scholar 

  14. Ponnamma D, Ramachandran R, Hussain S, Rajaraman R, Amarendra G, Varughese KT, Thomas S (2015) Free-volume correlation with mechanical and dielectric properties of natural rubber/multi walled carbon nanotubes composites. Compos Part A 77:164–171

    Article  CAS  Google Scholar 

  15. Mills DJ, Jamali SS, Paprocka K (2012) Investigation into the effect of nano-silica on the protective properties of polyurethane coatings. Surf Coat Technol 209:137–142

    Article  CAS  Google Scholar 

  16. Baysal G, Aydin H, Koytepe S, Seckin T (2013) Comparison dielectric and thermal properties of polyurethane/organoclay nanocomposites. Thermochim Acta 566:305–313

    Article  CAS  Google Scholar 

  17. Chen T, Qiu J, Zhu K, Li J (2016) Electro-mechanical performance of polyurethane dielectric elastomer flexible micro-actuator composite modified with titanium dioxide-graphene hybrid fillers. Mater Des 90:1069–1076

    Article  CAS  Google Scholar 

  18. Wang J, Yang W, Lei J (2008) A novel method to prepare polymer electrolyte based on thermoplastic polyurethane and its antistatic composites. J Electrostat 66:627–629

    Article  Google Scholar 

  19. Liu B, Syu J, Wang D (2013) Conductive polyurethane composites containing polyaniline-coated nano-silica. J Colloid Interface Sci 393:138–142

    Article  CAS  PubMed  Google Scholar 

  20. Renu J, Ravikumar HB, Munirathnamma LM, Lity AV, Unnikrishnan G (2018) Microstructural analysis of natural rubber/millable polyurethane blends using positron annihilation lifetime spectroscopy. Polym Plast Technol 57:196–205

    Article  Google Scholar 

  21. Manoj KC, Prajitha K, Unnikrishnan G (2011) Cure characteristics, swelling behaviors, and mechanical properties of carbon black filler reinforced EPDM/NBR blend system. J Appl Polym Sci 120:2654–2662

    Article  CAS  Google Scholar 

  22. Ivan C, Maria O, Jurgen P (2001) Relation between electrical and mechanical properties of conducting polymer composites. J Appl Polym Sci 82:1903–1906

    Article  Google Scholar 

  23. Soad ZS, Zahra MA, Qana AS, Nada YT, Mahmoud AH, Reda MS (2019) The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Des Monomers Polym 22:8–53

    Article  Google Scholar 

  24. Scheyla K, Claudia M, Guilherme-Barra MO, Jose CF, Alessandra L, Ana C, De S, Bluma GS (2016) Processing and characterization of conductive composites based on poly (styrene-b-ethylene-ran-butylene-b-styrene) (SEBS) and carbon additives: a comparative study of expanded graphite and carbon black. Compos Part B 84:236–247

    Article  Google Scholar 

  25. Jianwen C, Xihua C, Kunyan S, Yutian Z, Wei J (2017) Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos Sci Technol 140:99–105

    Article  Google Scholar 

  26. Alper K, Dincer A, Ali D (2014) Rheological and electrical properties of carbon black and carbon fiber filled cyclic olefin copolymer composites. Compos Part B 62:113–120

    Article  Google Scholar 

  27. Knite M, Teteris V, Ķiploka A, Kaupuzs J (2004) Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens Actuators A 110:142–149

    Article  CAS  Google Scholar 

  28. Balberg I (2002) A comprehensive picture of the electrical phenomena in carbon black–polymer composites. Carbon 40:139–143

    Article  CAS  Google Scholar 

  29. Abraham J, Arif PM, Kailas L, Kalarikkal N, George SC, Thomas S (2016) Developing highly conducting and mechanically durable styrene butadiene rubber composites with tailored microstructural properties by a green approach using ionic liquid modified MWCNTs. RSC Adv 6:32493–32504

    Article  CAS  Google Scholar 

  30. Chilaka N, Ghosh S (2012) Solid-state poly(ethylene glycol) polyurethane/polymethylmethacrylate/rutile TiO2 nanofiber composite electrolyte-correlation between morphology and conducting properties. Electrochim Acta 62:362–371

    Article  CAS  Google Scholar 

  31. Pei X, Xiaoxi W, Yadong H, Yunsheng D (2016) Piezoresistive properties of nanocomposites based on silicone rubber and ionic liquid-functionalized carbon black. Mater Lett 182:218–222

    Article  Google Scholar 

  32. Neagu E, Pissis P, Apekis L (2000) Electrical conductivity effects in polyethylene terephthalate films. J Appl Phys 87:2914–2922

    Article  CAS  Google Scholar 

  33. Haseena AP, Unnikrishnan G, Kalaprasad G (2007) Dielectric properties of short sisal/coir hybrid fibre reinforced natural rubber composites. Compos Interface 14:763–786

    Article  CAS  Google Scholar 

  34. Chen T, Pan L, Lin M, Wang B, Liu L, Li Y, Qiu J, Zhu X (2015) Dielectric, mechanical and electro-stimulus response properties studies of polyurethane dielectric elastomer modified by carbon nanotube-graphene nanosheet hybrid fillers. Polym Test 47:4–11

    Article  CAS  Google Scholar 

  35. Syed Sajid AS, Habib N, Abdul S (2018) Improved dielectric properties of polyetherimide and polyaniline-coated few-layer graphene based nanocomposites. J Mater Sci Mater Electron 29:402–411

    Article  Google Scholar 

  36. Jager KM, McQueen DH, Tchmutin IA, Ryvkina NG, Kluppel M (2001) Electron transport and ac electrical properties of carbon black polymer composites. J Phys D Appl Phys 34:2699–2707

    Article  CAS  Google Scholar 

  37. Taco N, Frederic P, Dominique D (1999) Comparison of polymer dynamics between entanglements and covalent cross-links. Phys Rev Lett 82:863–866

    Article  Google Scholar 

  38. Roger WW, Nagarajan R, Carl EN (2006) Contamination and ESD control in high-technology manufacturing. Wiley, New Jersey

    Google Scholar 

  39. Soloman MA, Philip K, Anantharaman MR, Joy PA (2003) Effect of carbon black on the mechanical and dielectric properties of rubber ferrite composites containing barium ferrite. J Appl Polym Sci 89:769–778

    Article  CAS  Google Scholar 

  40. Gengchao W, Lifeng J, Jiankun Y, Xingwei L (2010) Electrical and electrochemical properties of poly(2,5-dimercapto-1,3,4-thiadiazole)-polyaniline adduct intercalated graphite oxide composites. Mater Chem Phys 122:224–229

    Article  Google Scholar 

  41. Chilaka N, Ghosh S (2014) Dielectric studies of poly(ethylene glycol)-polyurethane/poly(methylmethacrylate)/montmorillonite composite. Electrochim Acta 134:232–241

    Article  CAS  Google Scholar 

  42. Shekhar S, Prasad V, Subramanyam SV (2006) Transport properties of conducting amorphous carbon–poly(vinyl chloride) composite. Carbon 44:334–340

    Article  CAS  Google Scholar 

  43. Shekhar S, Prasad V, Subramanyam SV (2006) Structural and electrical properties of composites of polymer–iron carbide nanoparticles embedded in carbon. Mater Sci Eng B 133:108–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unnikrishnan Gopalakrishna Panicker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, R., Varghese, L.A. & Gopalakrishna Panicker, U. Tailoring dielectric properties of natural rubber/millable polyurethane elastomer blends by filler embedding. Polym. Bull. 79, 2041–2060 (2022). https://doi.org/10.1007/s00289-021-03595-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03595-z

Keywords

Navigation