Skip to main content
Log in

Poultry eggshell effects on microporous poly(lactic acid)-based film fabrication for active compound-releasing sachets

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poultry eggshells (ES) were used to create microporous structures as an alternative and sustainable filler in a poly(lactic acid)/polybutylene succinate (PLA/PBS) blend designed for sachet use. Crude chicken eggshell (CES) and duck eggshell (DES) are utilized as natural calcium carbonate (CaCO3) sources by systematically varying filler content. Using CES and DES as sustainable fillers produces smaller pore diameters (ranging from 300 to 500 nm), a higher pore density (~ 106 pores/mm2) and greater pore homogeneity within the PLA/PBS matrices. Poultry ES also improves calcium dispersion within the PLA/PBS matrices, compared to the highly variable pore sizes which cause the calcium agglomeration clearly observed in the PLA/PBS/CaCO3 composites. Moreover, the organic residuals contained in the crude poultry ES promote interfacial adhesion in PLA/PBS matrices, resulting in uniform micropore distribution. The obtained morphologies of the PLA/PBS/poultry ES composites permit oxygen and water permeation comparable to those of conventional plastics currently used as active compound-releasing sachets. The stress–strain curves also reveal slightly improved toughness with 0.3 phr poultry ES. Lastly, poultry ES also induces crystalline PLA and PBS in α-forms with Xc,PLA of 20–30% and Xc,PBS of 30–50% and maintains high tensile strength, similar to that of PLA/PBS/CaCO3 composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmed J, Varshney SK (2011) Polylactides—Chemistry, Properties and Green Packaging Technology: A Review. Int J Food Prop 14:37–58. https://doi.org/10.1080/10942910903125284

    Article  CAS  Google Scholar 

  2. Grujić R, Vujadinović D, Savanović D (2017) Biopolymers as Food Packaging Materials. In: Nikolic D, Sort J, Baró M, Zivic F, Grujovic N, Grujic R, Pelemis S (eds) Pellicer E. Advances in Applications of Industrial Biomaterials, Springer International Publishing, pp 139–160

    Google Scholar 

  3. Petersen K, Væggemose Nielsen P, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10:52–68. https://doi.org/10.1016/S0924-2244(99)00019-9

    Article  CAS  Google Scholar 

  4. Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F (2018) Polylactic acid blends: The future of green, light and tough. Prog Polym Sci 85:83–127. https://doi.org/10.1016/j.progpolymsci.2018.07.001

    Article  CAS  Google Scholar 

  5. Mohsen A, Ali N (2018) Mechanical, Color and Barrier, Properties of Biodegradable Nanocomposites Polylactic Acid/Nanoclay. J Bioremed Biodeg 09:1–5. https://doi.org/10.4172/2155-6199.1000455

    Article  CAS  Google Scholar 

  6. Vroman I, Tighzert L (2009) Biodegradable Polymers Materials 2:307–344. https://doi.org/10.3390/ma2020307

    Article  CAS  Google Scholar 

  7. Signori F, Coltelli MB, Bronco S (2009) Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym Degrad Stab 94:74–82. https://doi.org/10.1016/j.polymdegradstab.2008.10.004

    Article  CAS  Google Scholar 

  8. Lu X, Zhao J, Yang X, Xiao P (2017) Morphology and properties of biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends with different viscosity ratio. Polym Test 60:58–67. https://doi.org/10.1016/j.polymertesting.2017.03.008

    Article  CAS  Google Scholar 

  9. Su S, Kopitzky R, Tolga S, Kabasci S (2019) Polylactide (PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review. Polymers 11:1193. https://doi.org/10.3390/polym11071193

    Article  CAS  PubMed Central  Google Scholar 

  10. Wang R, Wang S, Zhang Y, Wan C, Ma P (2009) Toughening modification of PLLA/PBS blends via in situ compatibilization. Polym Eng Sci 49:26–33. https://doi.org/10.1002/pen.21210

    Article  CAS  Google Scholar 

  11. Ferri JM, Garcia-Garcia D, Carbonell-Verdu A, Fenollar O, Balart R (2018) Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. J Appl Polym Sci 135:45751. https://doi.org/10.1002/app.45751

    Article  CAS  Google Scholar 

  12. Huneault MA, Li H (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 48:270–280. https://doi.org/10.1016/j.polymer.2006.11.023

    Article  CAS  Google Scholar 

  13. Xu J, Guo BH (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J 5:1149–1163. https://doi.org/10.1002/biot.201000136

    Article  CAS  PubMed  Google Scholar 

  14. Fujimaki T (1998) Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polym Degrad Stab 59:209–214. https://doi.org/10.1016/S0141-3910(97)00220-6

    Article  CAS  Google Scholar 

  15. Liu X, Dever M, Fair N, Benson RS (1997) Thermal and mechanical properties of poly(lactic Acid) and poly(ethylene/butylene Succinate) blends. J Environ Polym Degrad 5:225–235. https://doi.org/10.1007/BF02763666

    Article  CAS  Google Scholar 

  16. Park JW, Im SS (2002) Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate). J Appl Polym Sci 86:647–655. https://doi.org/10.1002/app.10923

    Article  CAS  Google Scholar 

  17. Zhang X, Liu Q, Shi J, Ye H, Zhou Q (2018) Distinctive Tensile Properties of the Blends of Poly(l-lactic acid) (PLLA) and Poly(butylene succinate) (PBS). J Polym Environ 26(4):1737–1744. https://doi.org/10.1007/s10924-017-1064-8

    Article  CAS  Google Scholar 

  18. Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Front Microbiol. 6(611); 37-44

  19. Alavi S, Thomas S, Sandeep K, Kalarikkal N, Varghese J, Yaragalla S (2014) Polymers for Packaging Applications. Apple Academic Press

  20. Otoni CG, Espitia PJP, Avena-Bustillos RJ, McHugh TH (2016) Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Res Int 83:60–73. https://doi.org/10.1016/j.foodres.2016.02.018

    Article  CAS  Google Scholar 

  21. Seo H-S, Bang J, Kim H, Beuchat L, Cho S, Ryu J-H (2012) Development of an antimicrobial sachet containing encapsulated allyl isothiocyanate to inactivate Escherichia coli O157:H7 on spinach leaves. Int J Food Microbiol 159:136–143. https://doi.org/10.1016/j.ijfoodmicro.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  22. Ellis M, Cooksey K, Dawson P, Han I, Vergano P (2006) Quality of Fresh Chicken Breasts Using a Combination of Modified Atmosphere Packaging and Chlorine Dioxide Sachets. J Food Prot 69:1991–1996. https://doi.org/10.4315/0362-028X-69.8.1991

    Article  CAS  PubMed  Google Scholar 

  23. Hempel A, Papkovsky D, Kerry J (2013) Use of Optical Oxygen Sensors in Non-Destructively Determining the Levels of Oxygen Present in Combined Vacuum and Modified Atmosphere Packaged Pre-Cooked Convenience-Style Foods and the Use of Ethanol Emitters to Extend Product Shelf-Life. Foods 2:507–520. https://doi.org/10.3390/foods2040507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cruz RS, Camilloto GP, Pires ACdS (2012) Oxygen Scavengers: An Approach on Food Preservation. In: Eissa AA (ed) Structure and Function of Food Engineering, IntechOpen

  25. Kim D, Seo J (2018) A review: Breathable films for packaging applications. Trends Food Sci Technol 76:15–27. https://doi.org/10.1016/j.tifs.2018.03.020

    Article  CAS  Google Scholar 

  26. Forney CF, Yaganza ES (2011) 12 - Fresh-cut produce packaging and the use of biaxial stretched films. In: DeMeuse MT (ed) Biaxial Stretching of Film. Woodhead Publishing. 5; 143–164.

  27. Ben-Yehoshua S, Beaudry R, Fishman S, Jayanty S, Mir N (2005) 4 Modified Atmosphere Packaging and Controlled Atmosphere Storage. In: Friendly E (ed) Ben-Yehoshua S. Technologies for Agricultural Produce Quality, Boca Raton, pp 61–112

    Google Scholar 

  28. Wu PD, Jones PD, Shelley PD, Woelfli B (2007) Novel Microporous Films and Their Composites. J Eng Fibers Fabr 2:49–59. https://doi.org/10.1177/155892500700200105

    Article  CAS  Google Scholar 

  29. Youssef AM (2013) Polymer Nanocomposites as a New Trend for Packaging Applications. Polym Plast Technol Eng 52(7):635–660. https://doi.org/10.1080/03602559.2012.762673

    Article  CAS  Google Scholar 

  30. Özen İ, Şİmşek S, (2017) Changing Breathability of Polyethylene Composite Films with Different Porous Structures Depending on Stretching Processes. Adv Polym Technol 36(2):203–210. https://doi.org/10.1002/adv.21600

    Article  CAS  Google Scholar 

  31. DuPont Co (2013) DuPont technical reference guide for medical and pharmaceutical packaging.

  32. Özen İ, Şİmşek S, (2016) Effect of stretching temperature on breathability and waterproofness properties of polyethylene films containing different calcium carbonates. J Plast Film Sheeting 32:380–401. https://doi.org/10.1177/8756087915597025

    Article  CAS  Google Scholar 

  33. Mizutani Y, Nakamura S, Kaneko S, Okamura K (1993) Microporous polypropylene sheets. Ind Eng Chem Res 32(1):221–227. https://doi.org/10.1021/ie00013a029

    Article  CAS  Google Scholar 

  34. Nagō S, Mizutani Y (1998) Microporous polypropylene sheets containing CaCO3 filler: Effects of stretching ratio and removing CaCO3 filler. J Appl Polym Sci 68(10):1543–1553. https://doi.org/10.1002/(SICI)1097-4628(19980606)68:10%3c1543::AID-APP1%3e3.0.CO;2-H

    Article  Google Scholar 

  35. Wang B, Dong F, Chen M, Zhu J, Tan J, Fu X, Wang Y, Chen S (2016) Advances in Recycling and Utilization of Agricultural Wastes in China: Based on Environmental Risk, Crucial Pathways, Influencing Factors, Policy Mechanism. Procedia Environ Sci 31:12–17. https://doi.org/10.1016/j.proenv.2016.02.002

    Article  Google Scholar 

  36. Sumesh KR, Kanthavel K, Kavimani V (2020) Machinability of hybrid natural fiber reinforced composites with cellulose micro filler incorporation. J Compos Mater. https://doi.org/10.1177/0021998320918020

    Article  Google Scholar 

  37. Sumesh KR, Kanthavel K (2020) Abrasive water jet machining of Sisal/Pineapple epoxy hybrid composites with the addition of various fly ash filler. Mater Res Express 7:035303 https://iopscience.iop.org/article/https://doi.org/10.1088/2053-1591/ab7865

  38. Yin W, Dai D, Hou J, Wang S, Wu X, Wang X (2018) Hierarchical porous biochar-based functional materials derived from biowaste for Pb(II) removal. Appl Surf Sci 465:297–302. https://doi.org/10.1016/j.apsusc.2018.09.010

    Article  CAS  Google Scholar 

  39. Salasinska K, Barczewski M, Górny R, Kloziński A (2018) Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polym Bull 75:2511–2528. https://doi.org/10.1007/s00289-017-2163-3

    Article  CAS  Google Scholar 

  40. King ori A, (2011) A Review of the Uses of Poultry Eggshells and Shell Membranes. Int J Poult Sci 10:908–912. https://doi.org/10.3923/ijps.2011.908.912

    Article  Google Scholar 

  41. Toro P, Quijada R, Yazdani-Pedram M, Arias JL (2007) Eggshell, a new bio-filler for polypropylene composites. Mater Lett 61:4347–4350. https://doi.org/10.1016/j.matlet.2007.01.102

    Article  CAS  Google Scholar 

  42. Sivarao Salleh MR, Kamely A, Tajul A, Taufik, (2011) Characterizing Chicken Eggshell Reinforced Polypropylene (PP). Adv Mater Res 264–265:871–879. https://doi.org/10.4028/www.scientific.net/AMR.264-265.871

    Article  CAS  Google Scholar 

  43. Iyer K, Torkelson J (2014) Green composites of polypropylene and eggshell: Effective biofiller size reduction and dispersion by single-step processing with solid-state shear pulverization. Compos Sci Technol 102:152–160. https://doi.org/10.1016/j.compscitech.2014.07.029

    Article  CAS  Google Scholar 

  44. Boronat T, Fombuena V, Garcia-Sanoguera D, Sanchez-Nacher L, Balart R (2015) Development of a biocomposite based on green polyethylene biopolymer and eggshell. Mater Des 68:177–185. https://doi.org/10.1016/j.matdes.2014.12.027

    Article  CAS  Google Scholar 

  45. Ashok B, Naresh S, Obi Reddy K, Madhukar K, Cai J, Zhang L, Rajulu AV (2014) Tensile and Thermal Properties of Poly(lactic acid)/Eggshell Powder Composite Films. Int J Polym Anal Ch 19:245–255. https://doi.org/10.1080/1023666X.2014.879633

    Article  CAS  Google Scholar 

  46. Li Y, Xin S, Bian Y, Xu K, Han C, Dong L (2016) The physical properties of poly(l-lactide) and functionalized eggshell powder composites. Int J Biol Macromol 85:63–73. https://doi.org/10.1016/j.ijbiomac.2015.12.070

    Article  CAS  PubMed  Google Scholar 

  47. Kong J, Li Y, Bai Y, Li Z, Cao Z, Yu Y, Han C, Dong L (2018) High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder. Int J Biol Macromol 112:4653. https://doi.org/10.1016/j.ijbiomac.2018.01.153

    Article  CAS  Google Scholar 

  48. Fischer EW, Sterzel H, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Z.Z Polym. 251; 980–990. https://doi.org/https://doi.org/10.1007/bf01498927

  49. Gigli M, Negroni A, Zanaroli G, Lotti N, Fava F, Munari A (2013) Environmentally friendly PBS-based copolyesters containing PEG-like subunit: Effect of block length on solid-state properties and enzymatic degradation. React Funct Polym 73:764–771. https://doi.org/10.1016/j.reactfunctpolym.2013.03.007

    Article  CAS  Google Scholar 

  50. Siracusa V (2012) Food Packaging Permeability Behaviour: A Report. Int J Polym Sci 2012:11. https://doi.org/10.1155/2012/302029

    Article  CAS  Google Scholar 

  51. Cizer Ö, Rodriguez-Navarro C, Ruiz-Agudo E, Elsen J, Van Gemert D, Van Balen K (2012) Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated lime. J Mater Sci 47:6151–6165. https://doi.org/10.1007/s10853-012-6535-7

    Article  CAS  Google Scholar 

  52. Al Omari M, Rashid I, Qinna N, Jaber AM, Badwan A (2016) Calcium Carbonate. In: Harry G. Brittain (ed) Profiles of Drug Substances. Excipients and Related Methodology, Elsevier Inc. 41; 31–132

  53. Hincke M, Nys Y, Gautron J, Mann K, Rodriguez-Navarro A, McKee M (2012) The eggshell: structure, composition and mineralization. Front Biosci 17:1266–1280. https://doi.org/10.2741/3985

    Article  CAS  Google Scholar 

  54. Li L, Song G, Tang G (2013) Novel Biodegradable Polylactide/Poly(butylene succinate) Composites via Cross-Linking with Methylene Diphenyl Diisocyanate. Polym Plast Technol Eng 52:1183–1187. https://doi.org/10.1080/03602559.2013.798817

    Article  CAS  Google Scholar 

  55. Bootklad M, Kaewtatio K (2013) Biodegradation of Thermoplastic Starch/Eggshell Powder Composites. Carbohydr Polym 97:315–320. https://doi.org/10.1016/j.carbpol.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  56. Ji G, Zhu H, Qi C, Zeng M (2009) Mechanism of interactions of eggshell microparticles with epoxy resins. Polym Eng Sci 49:1383–1388. https://doi.org/10.1002/pen.21339

    Article  CAS  Google Scholar 

  57. Wasanasuk K, Tashiro K (2011) Structural Regularization in the Crystallization Process from the Glass or Melt of Poly(l-lactic Acid) Viewed from the Temperature-Dependent and Time-Resolved Measurements of FTIR and Wide-Angle/Small-Angle X-ray Scatterings. Macromolecules 44:9650–9660. https://doi.org/10.1021/ma2017666

    Article  CAS  Google Scholar 

  58. Hwang SY, Yoo ES, Im SS (2012) The synthesis of copolymers, blends and composites based on poly(butylene succinate). Polym J 44:1179–1190. https://doi.org/10.1038/pj.2012.157

    Article  CAS  Google Scholar 

  59. Zhou C, Li H, Zhang W, Li J, Huang S, Meng Y, de Claville CJ, Yu D, Wu Z, Jiang S (2016) Thermal strain-induced cold crystallization of amorphous poly(lactic acid). Cryst Eng Comm 18:3237–3246. https://doi.org/10.1039/C6CE00464D

    Article  CAS  Google Scholar 

  60. Mangaraj S, Goswami TK, Mahajan PV (2009) Applications of Plastic Films for Modified Atmosphere Packaging of Fruits and Vegetables: A Review. Food Eng Rev 1:133–158. https://doi.org/10.1007/s12393-009-9007-3

    Article  CAS  Google Scholar 

  61. Mckeen LW (2012) Permeability Properties of Plastics and Elastomers. William Andrew, Waltham, USA and Oxford, UK

    Google Scholar 

  62. Maes C, Luyten W, Herremans G, Peeters R, Robert Carleer R, Buntinx M (2018) Recent Updates on the Barrier Properties of Ethylene Vinyl Alcohol Copolymer (EVOH): A Review. Polym Rev 58(2):209–246. https://doi.org/10.1080/15583724.2017.1394323

    Article  CAS  Google Scholar 

  63. Wang J, Gardner DJ, Stark NM, Bousfield DW, Tajvidi M, Cai Z (2018) Moisture and Oxygen Barrier Properties of Cellulose Nanomaterial-Based Films. ACS Sustain Chem Eng 6:49–70. https://doi.org/10.1021/acssuschemeng.7b03523

    Article  CAS  Google Scholar 

  64. Wu H, Xiao D, Lu J, Li T, Jiao C, Li S, Lu P, Zhang Z (2020) Preparation and Properties of Biocomposite Films Based on Poly(vinyl alcohol) Incorporated with Eggshell Powder as a Biological Filler. J Polym Environ 28:2020–2028. https://doi.org/10.1007/s10924-020-01747-2

    Article  CAS  Google Scholar 

  65. Jiang B, Li S, Wu Y, Song J, Chen S, Li X, Sun H (2018) Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder. CYTA-J Food 16(1):1045–1054. https://doi.org/10.1080/19476337.2018.1527783

    Article  CAS  Google Scholar 

  66. Farhoodi M, Mousavi SMA, Sotudeh-Gharebagh R, Emam-Djomeh Z, Oromiehie A (2014) Effect of spherical and platelet-like nanoparticles on physical and mechanical properties of polyethylene terephthalate. J Thermoplast Compos Mater 27(8):1127–1138. https://doi.org/10.1177/0892705712475007

    Article  CAS  Google Scholar 

  67. Pereira LM, Corrêa AC, Filho MDSMDS, Rosa MDF, Ito EN (2017) Rheological, morphological and mechanical characterization of recycled poly (ethylene terephthalate) blends and composites. Mater Res 20(3):791–800. https://doi.org/10.1590/1980-5373-MR-2016-0870

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the Graduate Program Scholarship from The Graduate School, Kasetsart University. Additionally, all crude poultry eggshells were kindly supported by Kasemchai Food Co., Ltd, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyawanee Jariyasakoolroj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarnlert, W., Tansin, K. & Jariyasakoolroj, P. Poultry eggshell effects on microporous poly(lactic acid)-based film fabrication for active compound-releasing sachets. Polym. Bull. 79, 1217–1238 (2022). https://doi.org/10.1007/s00289-021-03563-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03563-7

Keywords

Navigation