Skip to main content
Log in

Poly(lactic acid)-based bionanocomposites: effects of ZnO nanoparticles and essential oils on physicochemical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The main shortcoming of polylactic acid (PLA) for packaging applications is its brittleness. Thus, there is a pronounced interest in the potential use of PLA/zinc oxide nanoparticle (ZnO NP) systems as active food packaging. In this study, ZnO NPs and two types of essential oils (EOs) including Zataria multiflora L. (ZEO) and Mentha piperita L. (MEO) at different concentrations (0.5%, 1%, 1.5% w/w) were used for the production of active PLA-based bionanocomposites for packaging applications. The presence of ZnO NPs and EOs led to increased film thickness and improved contact angle properties. ZnO NPs boosted the PLA-based films’ WVP, whereas the EOs had the opposite effect. The increase in the ZEO and MEO content reduced the ultimate tensile strength and Young’s modulus and increased the elongation at break. The X-ray diffraction and Fourier transform infrared spectroscopy results confirmed that the improvements are related to the ZnO NPs exfoliation and good interaction between PLA and ZnO NPs in the presence of EOs. Differential scanning calorimetry analysis showed that the incorporation of ZnO NPs increased the glass transition temperature (Tg), but did not change the melting temperature (Tm), though the addition of the EOs lowered the values of both parameters. Morphology analysis by scanning electron microscopy and atomic force microscopy showed that the presence of ZEO/MEO led to increased pinholes, pores, and roughness in the microstructure of the films. These results revealed that ZnO-PLA films containing EOs may be used as controlled release antimicrobial food active packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heydari-Majd M, Ghanbarzadeh B, Shahidi-Noghabi M, Najafi MA, Hosseini M (2019) A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packag Shelf Life 19:94–103

    Google Scholar 

  2. Leyva-Verduzco A-A, Castillo-Ortega M-M, Chan-Chan L-H, Silva-Campa E, Galaz-Méndez R, Vera-Graziano R, Encinas-Encinas J-C, Castillo-Castro T-D, Rodríguez-Félix D-E, Santacruz-Ortega H-C, Santos-Sauceda I (2020) Electrospun tubes based on PLA, gelatin and genipin in different arrangements for blood vessel tissue engineering. Polym Bull 77:5985–6003

    CAS  Google Scholar 

  3. Commission, Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. (Regulation No 10/2011)

  4. Ahmed J, Mulla M, Jacob HH, Luciano G, Bini T, Almusallam A (2019) Polylactide/poly (ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging. Food Packag Shelf Life 21:100355

    Google Scholar 

  5. Ahmed J, Arfat YA, Castro-Aguirre E, Auras R (2016) Mechanical, structural and thermal properties of Ag–Cu and ZnO reinforced polylactide nanocomposite films. Int J Biol Macromol 86:885–892

    CAS  PubMed  Google Scholar 

  6. Heydari-Majd M, Ghanbarzadeh B, Shahidi-Noghabi M, Najafi MA, Adun P, Ostadrahimid A (2019) Kinetic release study of zinc from polylactic acid based nanocomposite into food simulants. Poly Test 76:254–260

    CAS  Google Scholar 

  7. Ahmad AA, Alsaad AM, Al-Bataineh QM, Al-Akhras MAH, Albataineh Z, Alizzy KA, Daoud NS (2020) Synthesis and characterization of ZnO NPs-doped PMMA-BDK-MR polymer-coated thin films with UV curing for optical data storage applications. Polym Bull. https://doi.org/10.1007/s00289-020-03155-x

    Article  Google Scholar 

  8. Tang Zh, Fan F, Chu Zh, Fan Ch, Qin Y (2020) Barrier properties and characterizations of poly(lactic acid)/ZnO nanocomposites. Molecules 25(6):1310

    CAS  PubMed Central  Google Scholar 

  9. Shankar S, Teng X, Li G, Rhim J-W (2015) Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Mater Sci Eng C 45:264–271

    CAS  Google Scholar 

  10. Elashmawi IS, Hakeem NA, Marei LK, Hanna FF (2010) Structure and performance of ZnO/PVC nanocomposites. Phys B Condens Matter 405(19):4163–4169

    CAS  Google Scholar 

  11. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov Food Sci Emerg Technol 11(4):742–748

    CAS  Google Scholar 

  12. Yu J, Yang J, Liu B, Ma X (2009) Preparation and characterization of glycerol plasticized-pea starch/ZnO–carboxymethylcellulose sodium nanocomposites. Bioresour Technol 100(11):2832–2841

    CAS  PubMed  Google Scholar 

  13. Salarbashi D, Mortazavi SA, Noghabi MS, Bazzaz BSF, Sedaghat N, Ramezani M, Shahabi-Ghahfarrokhi I (2016) Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles. Carbohydr Polym 140:220–227

    CAS  PubMed  Google Scholar 

  14. Salarbashi D, Tafaghodi M, Heydari-Majd M (2020) Fabrication of curcumin-loaded soluble soy bean polysaccharide/TiO2 nanoparticles bio-nanocomposite for improved antimicrobial activity. Nanomed J 7(4):291–298

    CAS  Google Scholar 

  15. Heydari-Majd M, Rajaei A, Salar-Bashi D, Mortazavi S-A, Bolourian Sh (2014) Optimization of ultrasonic-assisted extraction of phenolic compounds from bovine pennyroyal (Phlomidoschema parviflorum) leaves using response surface methodology. Ind Crops Prod 57:195–202

    CAS  Google Scholar 

  16. Javidi Z, Hosseini SF, Rezaei M (2016) Development of flexible bactericidal films based on poly (lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT Food Sci Tech 72:251–260

    CAS  Google Scholar 

  17. Moradi M, Tajik H, Rohani SMR, Oromiehie AR, Malekinejad H, Aliakbarlu J, Hadian M (2012) Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT Food Sci Tech 46(2):477–484

    CAS  Google Scholar 

  18. Samsudin H, Soto-Valdez H, Auras R (2014) Poly (lactic acid) film incorporated with marigold flower extract (Tagetes erecta) intended for fatty-food application. Food Control 46:55–66

    CAS  Google Scholar 

  19. Abdolshahi A, Naybandi-Atashi S, Heydari-Majd M, Salehi B, Kobarfard F, Ayatollahi SA, Ata A, Tabanelli G, Sharifi-Rad M, Montanari C, Marcello I, Sharifi-Rad J (2018) Antibacterial activity of some Lamiaceae species against Staphylococcus aureus in yoghurt-based drink (Doogh). Cell Mol Biol 64(8):71–77

    PubMed  Google Scholar 

  20. Fazeli MR, Amin G, Attari MMA, Ashtiani H, Jamalifar H, Samadi N (2007) Antimicrobial activities of Iranian sumac and avishan-e shirazi (Zataria multiflora) against some food-borne bacteria. Food Control 18(6):646–649

    Google Scholar 

  21. Abdolshahi A, Majd MH, Abdollahi M, Fatemizadeh S, Marvdashti LM (2020) Edible film based on lallemantia peltata L. seed gum development and characterization. J Chem Health Risks. https://doi.org/10.22034/jchr.2020.1896596.1118

    Article  Google Scholar 

  22. Monjazeb Marvdashti L, Yavarmanesh M, Koocheki A (2017) The effect of different concentrations of glycerol on properties of blend films based on polyvinyl alcohol-allysumhomolocarpum seed gum. IFSTRJ 12:663–677

    Google Scholar 

  23. Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Ojagh SMSM, Hosseini SMSM, Khaksar R (2013) Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int J Biol Macromol 52:116–124

    CAS  PubMed  Google Scholar 

  24. Heydari-Majd M, Rezaeinia H, Shadan MR, Ghorani B, Tucker N (2019) Enrichment of zein nanofibre assemblies for therapeutic delivery of Barije (Ferula gummosa Boiss) essential oil. J Drug Deliv Sci Technol 54:101290

    CAS  Google Scholar 

  25. ASTM, Standard test method for tensile properties of thin plastic sheeting (D882–02), In Annual book of ASTM standards. Philadelphia, PA: American Society for Testing Materials (2002).

  26. Shankar S, Wang LF, Rhim JW (2018) Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Mater Sci Eng C 93:289–298

    CAS  Google Scholar 

  27. ASME, Surface texture (surface roughness, waviness, and lay), An American National Standard. New York: ASME (2009).

  28. Abdolshahi A, Majd MH, Rad JS, Taheri M, Shabani A, Da Silva JAT (2015) Choice of solvent extraction technique affects fatty acid composition of pistachio (Pistacia vera L.) oil. J Food Sci Technol 52(4):2422–2427

    PubMed  Google Scholar 

  29. Lim GO, Jang SA, Song K (2010) Physical and antimicrobial properties of Gelidium corneum/nano-clay composite film containing grapefruit seed extract or thymol. J Food Eng 98(4):415–420

    CAS  Google Scholar 

  30. Ghasemlou M, Aliheidari N, Fahmi R, Shojaee-Aliabadi S, Keshavarz B, Cran MJ, Khaksar R (2013) Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbo Polym 98(1):1117–1126

    CAS  Google Scholar 

  31. Han J, Krochta J (1999) Wetting properties and water vapor permeability of whey-protein-coated paper. ASABE 42(5):1375

    CAS  Google Scholar 

  32. Shakouri S, Ziaolhagh HR, Rad JS, Majd MH, Tajali R, Nezarat S, Da Silva J (2015) The effect of packaging material and storage period on microwave-dried potato (Solanum tuberosum L.) cubes. J Food Sci Technol 52(6):3899–3910

    CAS  PubMed  Google Scholar 

  33. Erdohan Z-O, Çam B, Turhan N-Z (2013) Characterization of antimicrobial polylactic acid-based films. J Food Eng 119:308–315

    Google Scholar 

  34. Rhim JW, Mohanty AK, Singh SP, Ng P (2006) Effect of the processing methods on the performance of polylactide films: thermocompression versus solvent casting. J Polym Sci 101(6):3736–3742

    CAS  Google Scholar 

  35. Li W, Li L, Cao Y, Lan T, Chen H, Qin Y (2017) Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials 7(8):207

    PubMed Central  Google Scholar 

  36. Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci Chem 1(5):929–942

    CAS  Google Scholar 

  37. Chu Z, Zhao T, Li L, Fan J, Qin Y (2017) Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials 10(6):659

    PubMed Central  Google Scholar 

  38. Marra A, Silvestre C, Duraccio D, Cimmino S (2016) Polylactic acid/zinc oxide biocomposite films for food packaging application. Int J Biol Macromol 88:254–262

    CAS  PubMed  Google Scholar 

  39. Abdollahi M, Rezaei M, Farzi G (2012) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111(2):343–350

    CAS  Google Scholar 

  40. Salarbashi D, Tajik S, Ghasemlou M, Shojaee-Aliabadi S, Noghabi MS, Khaksar R (2013) Characterization of soluble soybean polysaccharide film incorporated essential oil intended for food packaging. Carbohydr Polym 98(1):1127–1136

    CAS  PubMed  Google Scholar 

  41. Péroval C, Debeaufort F, Despré A (2002) Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics. J Agric Food Chem 50(14):3977–3983

    PubMed  Google Scholar 

  42. Arrieta MP, López J, Hernández A, Rayón E (2014) Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. Eur Polym J 50:255–270

    CAS  Google Scholar 

  43. Lizundia E, Pérez-Álvarez L, Sáenz-Pérez M, Patrocinio D, Vilas JL, León L (2016) Physical aging and mechanical performance of poly (l-lactide)/ZnO nanocomposites. J Appl Polym Sci. https://doi.org/10.1002/app.43619

    Article  Google Scholar 

  44. Ojagh SM, Rezaei M, Razavi SH, Hosseini S (2010) Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Int J Biol Macromol 122(1):161–166

    CAS  Google Scholar 

  45. Salarbashi D, Tajik S, Shojaee-Aliabadi S, Ghasemlou M, Moayyed H, Khaksar R, Noghabi MS (2014) Development of new active packaging film made from a soluble soybean polysaccharide incorporated Zataria multiflora Boiss and Mentha pulegium essential oils. Food Chem 146:614–622

    CAS  PubMed  Google Scholar 

  46. Kaur H, Rathore A, Raju S (2014) A study on ZnO nanoparticles catalyzed ring opening polymerization of L-lactide. Carbohydr Polym 21(9):537

    Google Scholar 

  47. Huang XJ, Zeng XF, Wang JX, Chen J (2018) Transparent dispersions of monodispersed ZnO nanoparticles with ultrahigh content and stability for polymer nanocomposite film with excellent optical properties. Ind Eng Chem Res 57(12):4253–4260

    CAS  Google Scholar 

  48. Guillén M, Cabo N (2004) Study of the effects of smoke flavourings on the oxidative stability of the lipids of pork adipose tissue by means of Fourier transform infrared spectroscopy. Meat Sci 66(3):647–657

    PubMed  Google Scholar 

  49. Muik B, Lendl B, Molina-Diaz A, Valcarcel M, Ayora-Cañada M (2007) Two-dimensional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman spectroscopy. Anal Chim Acta 593(1):54–67

    CAS  PubMed  Google Scholar 

  50. Qin Y, Li W, Liu D, Yuan M, Li L (2017) Development of active packaging film made from poly (lactic acid) incorporated essential oil. Prog Org Coat 103:76–82

    CAS  Google Scholar 

  51. Alim KA, Fonoberov VA, Shamsa M, Balandin A (2005) Micro-Raman investigation of optical phonons in ZnO nanocrystals. J Appl Sci 97(12):124313

    Google Scholar 

  52. Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49(11):3471–3482

    CAS  Google Scholar 

  53. Pelissari FM, Grossmann MV, Yamashita F, Pineda E (2009) chemistry, Antimicrobial, mechanical, and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. J Agric Food Chem 57(16):7499–7504

    CAS  PubMed  Google Scholar 

  54. Armentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, Jiménez A, Yoon K, Ahn J, Kang S, Kenny JM (2015) Technology, bio-based PLA_PHB plasticized blend films: processing and structural characterization. LWT Food Sci Technol 64(2):980–988

    CAS  Google Scholar 

  55. Lizundia E, Ruiz-Rubio L, Vilas León J (2016) Poly (l-lactide)/zno nanocomposites as efficient UV-shielding coatings for packaging applications. J Appl Polym Sci. https://doi.org/10.1002/app.42426

    Article  Google Scholar 

  56. Luzi F, Fortunati E, Jiménez A, Puglia D, Chiralt A, Torre L (2017) 5, 2, PLA nanocomposites reinforced with cellulose nanocrystals from posidonia oceanica and ZnO nanoparticles for packaging application. J Renew Mater 5(2):103–115

    CAS  Google Scholar 

  57. Jiménez A, Fabra MJ, Talens P, Chiralt A (2013) Phase transitions in starch based films containing fatty acids. Effect on water sorption and mechanical behaviour. Food Hydrocoll 30(1):408–418

    Google Scholar 

  58. Chieng B, Ibrahim N, Then Y, Loo Y (2014) Epoxidized vegetable oils plasticized poly (lactic acid) biocomposites: mechanical, thermal and morphology properties. Molecules 19(10):16024–16038

    PubMed  PubMed Central  Google Scholar 

  59. Qin Y, Yang J, Xue J (2015) Characterization of antimicrobial poly (lactic acid)/poly (trimethylene carbonate) films with cinnamaldehyde. J Mater Sci 50(3):1150–1158

    CAS  Google Scholar 

  60. Ramos M, Jiménez A, Peltzer M, Garrigós M (2014) Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chem 162:149–155

    CAS  PubMed  Google Scholar 

  61. Noori FM, Ali N (2014) Study the mechanical and thermal properties of biodegradable polylactic acid/poly ethylene glycol nanocomposites. Int J Appl Innov Eng Manag 3(1):459–464

    Google Scholar 

  62. Lizundia E, Petisco S, Sarasua JR (2013) Phase-structure and mechanical properties of isothermally melt-and cold-crystallized poly (L-lactide). Behav Biomed Mater 17:242–251

    CAS  Google Scholar 

  63. Azizi H, Morshedian J, Barikani M, Wagner M (2010) Effect of layered silicate nanoclay on the properties of silane crosslinked linear low-density polyethylene (LLDPE). Polym Lett 4(4):252–262

    CAS  Google Scholar 

  64. Sánchez-González L, Pastor C, Vargas M, Chiralt A, González-Martínez C, Cháfer M (2011) Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol Technol 60(1):57–63

    Google Scholar 

Download references

Acknowledgement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Ghanbarzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari-Majd, M., Ghanbarzadeh, B., Shahidi-Noghabi, M. et al. Poly(lactic acid)-based bionanocomposites: effects of ZnO nanoparticles and essential oils on physicochemical properties. Polym. Bull. 79, 97–119 (2022). https://doi.org/10.1007/s00289-020-03490-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03490-z

Keywords

Navigation