Skip to main content

Advertisement

Log in

Design, synthesis and antimicrobial properties of cellulose-based amine film

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Film directing toward applications in food packaging and counter top coating with ability of inhibiting antimicrobial growth is important for maintaining food freshness and reducing bacteria transmittance. In this work, cellulose-based fatty amine with antimicrobial functionality covalently attached to cellulose backbone was synthesized. The synthesis was performed in a three-step process that involves cellulose oxidation, amination of oxidized cellulose using fatty amine and reduction. Films composites with various proportions of cellulose-based amine and cellulose triacetate were prepared. The films morphologies, tensile strengths, percent of elongation and contact angle were evaluated. The cellulose-based amine showed excellent antimicrobial activity against gram positive and moderate activity toward gram-negative bacteria. The films prevented the growth of gram-positive bacteria by 99.99%. Results indicate a good mechanical properties and bioactivities of produced film which makes it suitable for use in food wrapping application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yufeng L, Zongjun T, Jie L, Yi C, Fang Q, Shangru Z, Qingda A, Haisong W (2019) The fabrication of a degradable film with high antimicrobial and antioxidant activities. Ind Crops Prod 140(15):111692. https://doi.org/10.1016/j.indcrop.2019.111692

    Article  CAS  Google Scholar 

  2. Hülya C, Yes O, Osman YT, Ebru F, Funda K-G (2020) Whey protein isolate edible films incorporated with essential oils: antimicrobial activity and barrier properties. Polym Degrad Stab 179:109285 https://doi.org/10.1016/j.polymdegradstab.2020.109285

  3. Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging. a review. Crit Rev Food Sci Nutr 44:223–237. https://doi.org/10.1080/10408690490464276

    Article  CAS  PubMed  Google Scholar 

  4. Han JH (2000) Antimicrobial food packaging. Food Technol 54(3):56–65. https://doi.org/10.1533/9781855737020.1.50

    Article  Google Scholar 

  5. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3(2):113–126. https://doi.org/10.1016/S1466-8564(02)00012-7

    Article  CAS  Google Scholar 

  6. Vermeiren L, Devlieghere F, Debevere J (2002) Effectiveness of some recent antimicrobial packaging concepts. Food Addit Contam 19:163–171. https://doi.org/10.1080/02652030110104852

    Article  CAS  PubMed  Google Scholar 

  7. Tooraj M, Hossein T, Seyed MRR, Abdol RO (2012) Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil. Vet Res Forum, 3(3): 167–173. PMC4299978

  8. Adnan M, Dalod A, Balci M, Glaum J, Einarsrud M-A (2018) In situ synthesis of hybrid inorganic–polymer nanocomposites. Polymers 10(10):1129

    Article  Google Scholar 

  9. Fu S, Sun Z, Huang P, Li Y, Hu N (2019) Some basic aspects of polymer nanocomposites: a critical review. Nano Mater Sci 1(1):2

    Article  Google Scholar 

  10. Petersen K, Nielsen PV, Bertelsen G et al (1999) Potential of biobased materials for food packaging. Trends Food Sci Tech 10:52–68

    Article  CAS  Google Scholar 

  11. Atarés L, Bonilla J, Chiralt A (2010) Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. J Food Eng 100:678–687. https://doi.org/10.1016/j.jfoodeng.2010.05.018

    Article  CAS  Google Scholar 

  12. Sanchez-Gonzalez L, Cháfer M, Chiralt A, González-Martínez C (2010) Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydr Polym 82:277–283. https://doi.org/10.1016/j.carbpol.2010.04.047

    Article  CAS  Google Scholar 

  13. Tianqi H, Yusheng Q, Jia W, Chuncai Z (2019) Polymeric antimicrobial food packaging and its applications. Polymers 11(3):560. https://doi.org/10.3390/polym11030560

    Article  CAS  Google Scholar 

  14. Kana R, Amir M (2017) Antimicrobial Activity of Chitosan Film Forming Solution Enriched with Essential Oils; an in Vitro Assay. Iran J Biotechnol. 15(2): 111–119. 10.15171/IJB.1360.

  15. Jessica IL-N, Nancy PD-Z, Carlos V-S, Ana LM-H, Beatriz IT-R, Margarita G-H, José LR-A, Ulises P-G, Adriana IRT (2018) Antimicrobial, Optical and Mechanical Properties of Chitosan-Starch Films with Natural Extracts. Int J Mol Sci. 18(5):997. https://doi.org/10.3390/ijms18050997

    Article  CAS  Google Scholar 

  16. Zhang GF, Yang ZB, Wang Y, Yang WR, Jiang SZ, Gai GS (2009) Effects of ginger root (Zingiber officinale) processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens. Poult Sci 88:2159–2166. https://doi.org/10.3382/ps.2009-00165

    Article  CAS  PubMed  Google Scholar 

  17. Hanusova K, Dobias J, Klaudisova K. (2009) Effect of packaging films releasing antimicrobial agents on stability of food products. Czech J Food Sci. 27:347–349. https://www.agriculturejournals.cz/publicFiles/07938.pdf

  18. Gutierrez J, Barry-Ryan C, Bourke P (2009) Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components. Food Microbiol 26:142–150. https://doi.org/10.1016/j.fm.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  19. Cooksey K (2005) Effectiveness of antimicrobial food packaging materials. Food Addit Contam 22(10):980–987. https://doi.org/10.1080/02652030500246164

    Article  CAS  PubMed  Google Scholar 

  20. Hamed O, Fouad Y, Hamed EM, Al-Hajj N (2012) Cellulose powder from olive industry solid waste. BioResources 7(3):4190–4201. https://doi.org/10.15376/biores.7.3.4190-4201

    Article  Google Scholar 

  21. Hamed O, Jodeh S, Al-Hajj N, Abo-Obeid A, Hamed EM, Fouad Y (2014) Cellulose acetate from biomass waste of olive industry. Journal of Wood Science 61(1):45–62. https://doi.org/10.1007/s10086-014-1442-y

    Article  CAS  Google Scholar 

  22. Hamed O, Abu Lail B, Deghles A, Qasem B, Azzaoui KA, Obied A, Algarra M, Jodeh S (2019) Synthesis of a cross-linked cellulose-based amine polymer and its application in wastewater purification. Environ Sci Pollut Res 26(27):28080–28091. https://doi.org/10.1007/s11356-019-06001-4

    Article  CAS  Google Scholar 

  23. Deghles A, Hamed O, Abu LB, Azar M, Azzaoui K, Abu Obied A, Algarra M, Jodeh S (2019) Cellulose with Bidentate Chelating Functionality: An Adsorbent for Metal Ions from Wastewater. BioResouces 14(3):6247–6266

    Article  CAS  Google Scholar 

  24. Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromol 1(3):488–492. https://doi.org/10.1021/bm0000337

    Article  CAS  Google Scholar 

  25. Lázaro-Martínez JM, Romasanta PN, Chattah AK, Buldain GY (2010) NMR characterization of hydrate and aldehyde forms of imidazole-2-carboxaldehyde and derivatives. J Org Chem 75(10):3208–3213. https://doi.org/10.1021/jo902588s

    Article  CAS  PubMed  Google Scholar 

  26. Algarra M, Bartolić D, Radotić K, Mutavdžić D, Pino-González MS, Rodríguez-Castellón E, Lázaro-Martínez JM, Guerrero-González JJ, Esteves da Silva JCG, Jiménez-Jiménez J (2019) P-doped carbon nano-powders for finger print imaging. Talanta 194:150–157. https://doi.org/10.1016/j.talanta.2018.10.033

    Article  CAS  PubMed  Google Scholar 

  27. Guérin C, Bellosta V, Guillamot GJ (2011) Ni(II)/Zn catalyzed reductive coupling of aryl halides with diphenylphosphine oxide in water. Org Lett 13:3478–3481

    Article  Google Scholar 

  28. Biswas A, Saha BC, Lawton JW, Shogren RL, Willett JL (2006) Process for obtaining cellulose acetate from agricultural by-products. Carbohyd Polym 64:134–137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Palestinian Water Authority and MEDRC (an International Organization mandated to find solutions to freshwater scarcity).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Othman Hamed or Shehdeh Jodeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, O., Radad, R., Jodeh, S. et al. Design, synthesis and antimicrobial properties of cellulose-based amine film. Polym. Bull. 79, 627–641 (2022). https://doi.org/10.1007/s00289-020-03482-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03482-z

Navigation