Skip to main content
Log in

Size-controlled in situ synthesis of metal–polymer nanocomposite films using a CO2 laser

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In situ synthesis of metal–polymer nanocomposite films by irradiating a CO2 laser for several seconds is a new alternative to fabricate metal–polymer nanocomposite films. The main features of this method are that the number density of the synthesized metal nanoparticles is very high so that the optical density easily exceeds 0.5 ~ 1.5 for the film thickness of ~ 200 nm, and owing to the short fabrication time and the use of non-focused laser beam, large-scale processing is possible. For this technique to be applicable for a variety of purposes, an important question is how and how much we can control the film properties. In this work, we demonstrate that the size and size distribution of metallic nanoparticles in the synthesized nanocomposite films can be well controlled by the choice of the laser power and irradiation time as well as the concentrations of nanoparticle precursor. Properties of the synthesized films can be roughly understood by considering the diffusion of metallic ions, atoms, and nanoparticles in the polymer film under the elevated temperature induced by the CO2 laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sih BC, Wolf MO (2005) Metal nanoparticle - conjugated polymer nanocomposites. Chem Commun. https://doi.org/10.1039/b501448d

    Article  Google Scholar 

  2. Jain PK, Huang X, El-sayed IH, El-sayed MA (2008) Noble metals on the nanoscale : optical and photothermal properties and some applications. Acc Chem Res 41:7–9. https://doi.org/10.1021/ar7002804

    Article  CAS  Google Scholar 

  3. Ramesh GV, Porel S, Radhakrishnan TP (2009) Polymer thin films embedded with in situ grown metal nanoparticles. Chem Soc Rev 38:2646–2656. https://doi.org/10.1039/b815242j

    Article  CAS  PubMed  Google Scholar 

  4. Faupel F, Zaporojtchenko V, Strunskus T, Elbahri M (2010) Metal-polymer nanocomposites for functional applications. Adv Eng Mater 12:1177–1190. https://doi.org/10.1002/adem.201000231

    Article  CAS  Google Scholar 

  5. Mir SH, Nagahara LA, Thundat T et al (2018) Review—organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J Electrochem Soc 165:B3137–B3156. https://doi.org/10.1149/2.0191808jes

    Article  CAS  Google Scholar 

  6. Mbhele ZH, Salemane MG, Van SCGCE et al (2003) Fabrication and characterization of silver - polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  7. Khanna PK, Singh N, Charan S et al (2005) Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater Chem Phys 93:117–121. https://doi.org/10.1016/j.matchemphys.2005.02.029

    Article  CAS  Google Scholar 

  8. Xu P, Han X, Zhang B et al (2014) Multifunctional polymer-metal nanocomposites via direct chemical reduction by conjugated polymers. Chem Soc Rev 43:1349–1360. https://doi.org/10.1039/c3cs60380f

    Article  CAS  PubMed  Google Scholar 

  9. Korchev AS, Bozack MJ, Slaten BL, Mills G (2004) Polymer-initiated photogeneration of silver nanoparticles in SPEEK/PVA films: direct metal photopatterning. J Am Chem Soc 126:10–11. https://doi.org/10.1021/ja037933q

    Article  CAS  PubMed  Google Scholar 

  10. Sakamoto M, Tachikawa T, Fujitsuka M, Majima T (2006) Acceleration of laser-induced formation of gold nanoparticles in a poly ( vinyl alcohol ) film. Langmuir 22:6361–6366

    Article  CAS  Google Scholar 

  11. Pucci A, Bernabò M, Elvati P et al (2006) Photoinduced formation of gold nanoparticles into vinyl alcohol based polymers. J Mater Chem 16:1058–1066. https://doi.org/10.1039/b511198f

    Article  CAS  Google Scholar 

  12. Sakamoto M, Tachikawa T, Fujitsuka M, Majima T (2007) Photochemical formation of Au/Cu bimetallic nanoparticles with different shapes and sizes in a poly(vinyl alcohol) film. Adv Funct Mater 17:857–862. https://doi.org/10.1002/adfm.200600700

    Article  CAS  Google Scholar 

  13. Lee CJ, Karim MR, Lee MS (2007) Synthesis and characterization of silver/thiophene nanocomposites by UV-irradiation method. Mater Lett 61:2675–2678. https://doi.org/10.1016/j.matlet.2006.10.021

    Article  CAS  Google Scholar 

  14. Jiang T, Li J, Zhang L et al (2014) Microwave assisted in situ synthesis of Ag-NaCMC films and their reproducible surface-enhanced Raman scattering signals. J Alloys Compd 602:94–100

    Article  CAS  Google Scholar 

  15. Porel S, Singh S, Harsha SS et al (2005) Nanoparticle-embedded polymer: In situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting. Chem Mater 17:9–12. https://doi.org/10.1021/cm0485963

    Article  CAS  Google Scholar 

  16. Karthikeyan B, Anija M, Phillip R (2006) In situ synthesis and nonlinear optical properties of Au: Ag nanocomposite polymer films. Appl Phys Lett 88:053104. https://doi.org/10.1063/1.2168667

    Article  CAS  Google Scholar 

  17. Gradess R, Abargues R, Habbou A et al (2009) Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films. J Mater Chem 19:9233–9240. https://doi.org/10.1039/b910020b

    Article  CAS  Google Scholar 

  18. Hariprasad E, Radhakrishnan TP (2013) In situ fabricated polymer-silver nanocomposite thin film as an inexpensive and efficient substrate for surface-enhanced Raman scattering. Langmuir 29:13050–13057. https://doi.org/10.1021/la402594j

    Article  CAS  PubMed  Google Scholar 

  19. Elashmawi IS, Menazea AA (2019) Different time ’ s Nd : YAG laser-irradiated PVA / Ag nanocomposites : structural, optical, and electrical. J Mater Res Technol 8:1944–1951

    Article  CAS  Google Scholar 

  20. Kashihara K, Uto Y, Nakajima T (2018) Rapid in situ synthesis of polymer-metal nanocomposite films in several seconds using a CO2 laser. Sci Rep 8:14719. https://doi.org/10.1038/s41598-018-33006-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishikawa H, Nakata E, Nakano S et al (2019) Influence of polymer molecular weight on the properties of in situ synthesized silver–methylcellulose nanocomposite films with a CO2 laser. J Mater Sci 55:2090–2100. https://doi.org/10.1007/s10853-019-04149-5

    Article  CAS  Google Scholar 

  22. Maurya SK, Uto Y, Kashihara K et al (2018) Rapid formation of nanostructures in Au films using a CO2 laser. Appl Surf Sci 427:961–965. https://doi.org/10.1016/j.apsusc.2017.09.044

    Article  CAS  Google Scholar 

  23. Faniayeu I, Ishimatsu Y, Nakajima T (2019) Surface plasmon resonance tuning of Ag nanoisland films using a CO2 laser. J Phys D Appl Phys 52:1–8. https://doi.org/10.1088/1361-6463/ab1b7b

    Article  CAS  Google Scholar 

  24. Chen C, Li J, Luo G et al (2012) Size-controlled in situ synthesis and photo-responsive properties of silver/poly(methyl methacrylate) nanocomposite films with high silver content. Appl Surf Sci 258:10180–10184. https://doi.org/10.1016/j.apsusc.2012.06.102

    Article  CAS  Google Scholar 

  25. Abyaneh MK, Paramanik D, Varma S et al (2007) Formation of gold nanoparticles in polymethylmethacrylate by UV irradiation. J Phys D Appl Phys 40:3771–3779. https://doi.org/10.1088/0022-3727/40/12/032

    Article  CAS  Google Scholar 

  26. Spano F, Massaro A, Blasi L et al (2012) In situ formation and size control of gold nanoparticles into chitosan for nanocomposite surfaces with tailored wettability. Langmuir 28:3911–3917. https://doi.org/10.1021/la203893h

    Article  CAS  PubMed  Google Scholar 

  27. Torrell M, Cunha L, Cavaleiro A et al (2010) Functional and optical properties of Au:TiO 2 nanocomposite films: the influence of thermal annealing. Appl Surf Sci 256:6536–6542. https://doi.org/10.1016/j.apsusc.2010.04.043

    Article  CAS  Google Scholar 

  28. Torrell M, Kabir R, Cunha L et al (2011) Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing. J Appl Phys 109:1–9. https://doi.org/10.1063/1.3565066

    Article  CAS  Google Scholar 

  29. Takele H, Greve H, Pochstein C et al (2006) Plasmonic properties of Ag nanoclusters in various polymer matrices. Nanotechnology 17:3499–3505. https://doi.org/10.1088/0957-4484/17/14/023

    Article  CAS  PubMed  Google Scholar 

  30. Takele H, Jebril S, Strunskus T et al (2008) Tuning of electrical and structural properties of metal-polymer nanocomposite films prepared by co-evaporation technique. Appl Phys A Mater Sci Process 92:345–350. https://doi.org/10.1007/s00339-008-4524-0

    Article  CAS  Google Scholar 

  31. Beyene HT, Chakravadhanula VSK, Hanisch C et al (2010) Preparation and plasmonic properties of polymer-based composites containing Ag-Au alloy nanoparticles produced by vapor phase co-deposition. J Mater Sci 45:5865–5871. https://doi.org/10.1007/s10853-010-4663-5

    Article  CAS  Google Scholar 

  32. Schürmann U, Hartung W, Takele H et al (2005) Controlled syntheses of Ag-polytetrafluoroethylene nanocomposite thin films by co-sputtering from two magnetron sources. Nanotechnology 16:1078–1082. https://doi.org/10.1088/0957-4484/16/8/014

    Article  CAS  Google Scholar 

  33. Avasthi DK, Mishra YK, Kabiraj D et al (2007) Synthesis of metal-polymer nanocomposite for optical applications. Nanotechnology. https://doi.org/10.1088/0957-4484/18/12/125604

    Article  Google Scholar 

  34. Hourd AC, Baker RT, Abdolvand A (2015) Structural characterisation of printable noble metal/poly(vinyl-alcohol) nanocomposites for optical applications. Nanoscale 7:13537–13546. https://doi.org/10.1039/c5nr03636d

    Article  CAS  PubMed  Google Scholar 

  35. Paeng D, Lee D, Grigoropoulos CP (2014) Characteristic time scales of coalescence of silver nanocomposite and nanoparticle films induced by continuous wave laser irradiation. Appl Phys Lett 105:1–5. https://doi.org/10.1063/1.4893465

    Article  CAS  Google Scholar 

  36. Sahu P, Prasad BLV (2013) Fine control of nanoparticle sizes and size distributions: temperature and ligand effects on the digestive ripening process. Nanoscale 5:1768–1771. https://doi.org/10.1039/c2nr32855k

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nakajima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashihara, K., Uto, Y. & Nakajima, T. Size-controlled in situ synthesis of metal–polymer nanocomposite films using a CO2 laser. Polym. Bull. 78, 6969–6981 (2021). https://doi.org/10.1007/s00289-020-03481-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03481-0

Keywords

Navigation