Skip to main content
Log in

The role of simulated body fluid and force on the mechanical and tribological properties of α-tocopherol stabilized UHMWPE for biomedical applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, the effects of simulated body fluid (SBF) and force on the mechanical and tribological properties of ultrahigh molecular weight polyethylene (UHMWPE) stabilized with α-tocopherol (α-T/UHMWPE) were evaluated. The crystallinity, chemical composition, wettability and wear mechanism were examined to understand the changes in the observed properties. The experimental results showed that the crystallinity and O/C ratio increased by 13.4 and 7.0%, respectively, after immersing α-T/UHMWPE in SBF for one year. At the same time, these properties changed slightly after the impact of force as well as degradation. These changes resulted in reducing the mechanical properties and contact angle after immersion with α-T/UHMWPE in SBF for one year. The coarse surface led to lower contact angle, higher initial friction coefficient and lower creep resistance due to force and degradation, whereas other mechanical properties changed slightly. The wear changed from scratches and furrows in α-T/UHMWPE or after the impact of force and degradation to furrows, flakes and ruptures after immersion in SBF for one year. These changes in properties in α-T/UHMWPE were less than that in pure UHMWPE owing to oxidation and wear resistance of UHMWPE that were improved by α-tocopherol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kurtz SM (2016) UHMWPE biomaterials handbook-Ultra-high molecular weight polyethylene in total joint replacement and medical devices. Elsevier, Oxford

    Google Scholar 

  2. Duraccio D, Strongone V, Malucelli G, Auriemma F, De Rosa C, Mussano FD, Genova T, Faga MG (2019) The role of alumina-zirconia loading on the mechanical and tribological properties of UHMWPE for biomedical application. Compos Part B-Eng 164:800–808. https://doi.org/10.1016/j.compositesb.2019.01.097

    Article  CAS  Google Scholar 

  3. Ansari F, Ries MD, Pruitt L (2016) Effect of processing, sterilization and crosslinking on UHMWPE fatigue fracture and fatigue wear mechanisms in joint arthroplasty. J Mech Behav Biomed 53:329–340. https://doi.org/10.1016/j.jmbbm.2015.08.026

    Article  CAS  Google Scholar 

  4. Gundapaneni D, Laughlin RT, Goswami T (2016) Characterization of retrieved total ankle replacement. Eng Fail Anal 70:237–254. https://doi.org/10.1016/j.engfailanal.2016.09.05

    Article  CAS  Google Scholar 

  5. Ansari F, Lee T, Malito L, Martin A, Gunther SB, Harmsen S, Norris TR, Ries M, Van Citters D, Pruitt L (2016) Analysis of severely fractured glenoid components: clinical consequences of biomechanics, design, and materials selection on implant performance. J Shoulder Elb Surg 25(7):1041–1050. https://doi.org/10.1016/j.jse.2015.10.017

    Article  Google Scholar 

  6. Currier BH, Currier JH, Franklin KJ, Mayor MB, Reinitz SD, Van Citters D (2015) Comparison of wear and oxidation in retrieved conventional and highly cross-linked UHMWPE tibial inserts. J Arthroplasty 30(12):2349–2352. https://doi.org/10.1016/j.arth.2015.06.014

    Article  PubMed  Google Scholar 

  7. Hope N, Bellare A (2015) A comparison of the efficacy of various antioxidants on the oxidative stability of irradiated polyethylene. Clin Orthop Relat R 473(3):936–941. https://doi.org/10.1007/s11999-014-3946-6

    Article  Google Scholar 

  8. Narayan VS (2015) Spectroscopic and chromatographic quantification of an antioxidant-stabilized ultrahigh-molecular-weight polyethylene. Clin Orthop Relat R 473(3):952–959. https://doi.org/10.1007/s11999-014-4108-6

    Article  Google Scholar 

  9. Shen J, Liu XC, Fu J (2014) Effect of squalene absorption on oxidative stability of highly crosslinked UHMWPE stabilized with natural polyphenols. Polym Degrad Stabl 110:113–120. https://doi.org/10.1016/j.polymdegradstab.2014.08.023

    Article  CAS  Google Scholar 

  10. Wolf C, Maninger J, Lederer K, Fruhwirth-Smouning H, Gamse T, Marr R (2006) Stabilisation of crosslinked ultra-high molecular weight polyethylene (UHMW-PE)-acetabular components with α-tocopherol. J Mater Sci: Mater Med 17:1323–1331. https://doi.org/10.1007/s10856-006-0607-7

    Article  CAS  Google Scholar 

  11. Souza VC, Fim FC, Lima MEA, Silva LB (2019) Antioxidant effect of vitamin C on biomedical UHMWPE compounds. Macromol Symp 383:1800002. https://doi.org/10.1002/masy.20180002

    Article  Google Scholar 

  12. Saikko V (2019) Wear and friction of thin, large-diameter acetabular liners made from highly cross-linked, vitamin-E-stabilized UHMWPE against CoCr femoral heads. Wear 432–433:202948. https://doi.org/10.1016/j.wear.2019.202948

    Article  CAS  Google Scholar 

  13. Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7):671–701. https://doi.org/10.1007/bf02522884

    Article  CAS  PubMed  Google Scholar 

  14. Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Radic Bio Med 43(1):4–15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024

    Article  CAS  Google Scholar 

  15. Oral E, Greenbaum ES, Malhi AS, Harris WH, Muratoglu OK (2005) Characterization of irradiated blends of α-tocopherol and UHMWPE. Biomaterials 26(33):6657–6663. https://doi.org/10.1016/j.biomaterials.2005.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oral E, Wannomae KK, Hawkins N, Harris WH, Muratoglu OK (2004) α-Tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials 25(24):5515–5522. https://doi.org/10.1016/j.biomaterials.2003.12.048

    Article  CAS  PubMed  Google Scholar 

  17. Kurtz SM, Dumbleton J, Siskey RS, Wang A, Manley M (2009) Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation. J Biomed Mater Res A 90(2):549–563. https://doi.org/10.1002/jbm.a.32122

    Article  CAS  PubMed  Google Scholar 

  18. Oral E, Christensen SD, Malhi AS, Wannomae KK, Muratoglu OK (2006) Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E. J Arthroplasty 21(4):580–591. https://doi.org/10.1016/j.arth.2005.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  19. Oral E, Beckos CAG, Lozynsky AJ, Malhi AS, Muratoglu OK (2009) Improved resistance to wear and fatigue fracture in high pressure crystallized vitamin E-containing ultra-high molecular weight polyethylene. Biomaterials 30(10):1870–1880. https://doi.org/10.1016/j.biomaterials.2003.12.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wannomae KK, Christensen SD, Micheli BR, Rowell SL, Schroeder DW, Muratoglu OK (2010) Delamination and adhesive wear behavior of (alpha)-tocopherol-stabilized irradiated ultrahigh-molecular-weight polyethylene. J Arthroplasty 25(4):635–643. https://doi.org/10.1016/j.arth.2010.12.012

    Article  PubMed  Google Scholar 

  21. Oral E, Neils AL, Rowell SL, Lozynsky AJ, Muratoglu OK (2013) Increasing irradiation temperature maximizes vitamin E grafting and wear resistance of ultrahigh molecular weight polyethylene. J Biomed Mater Res B 101(3):436–440. https://doi.org/10.1002/jbm.b.32807

    Article  CAS  Google Scholar 

  22. Fu J, Doshi BN, Oral E, Muratoglu OK (2013) High temperature melted, radiation cross-linked, vitamin E stabilized resistant UHMWPE with low wear and high impact strength. Polymer 54(1):199–209. https://doi.org/10.1016/j.polymer.2012.11.017

    Article  CAS  Google Scholar 

  23. Kurtz SM, Hozack WJ, Purtill JJ, Marcolongo M, Kraay MJ, Goldberg VM, Sharkey PF, Parvizi J, Rimnac CM, Edidin AA (2006) 2006 Otto aufranc award paper: Significance of in vivo degradation for polyethylene in total hip arthroplasty. Clin Orthop Relat Res 453:47–57. https://doi.org/10.1097/01.blo.0000246547.18187.0b

    Article  PubMed  Google Scholar 

  24. Kang XQ, Yao C, Yang CM, Feng PZ (2017) Effects of force and simulated body fluids on oxidative degradation and mechanical properties of ultrahigh molecular weight polyethylene. Int J Polym Anal Ch 22(5):383–393. https://doi.org/10.1080/1023666X.2017.1300852

    Article  CAS  Google Scholar 

  25. Edidin AA, Rimnac CM, Goldberg VM, Kurtz SM (2001) Mechanical behavior, wear surface morphology, and clinical performance of UHMWPE acetabular components after 10 years of implantation. Wear 250–251(1):152–158. https://doi.org/10.1016/s0043-1648(01)00616-0

    Article  Google Scholar 

  26. Kang XQ (2014) Oxidation degradation and biotribological properties of UHMWPE. Dissertation, China University of Mining and Technology

  27. Hara K, Kaku N, Tsumura H, Torisu T (2008) Analysis of wear and oxidation on retrieved bipolar polyethylene liner. J Orthop Sci 13(4):366–370. https://doi.org/10.1007/s00776-008-133-7

    Article  CAS  PubMed  Google Scholar 

  28. Kang XQ, Ge SR, Dai XF (2014) Mechanical properties and tribological behaviour of retrieved UHMWPE tibial insert in total knee replacement after implantation 30 months. Polym Polym Compos 22(6):561–567. https://doi.org/10.1177/096739111402200608

    Article  CAS  Google Scholar 

  29. Pawaskar SS, Ingham E, Fisher J, Jin Z (2011) Fluid load support and contact mechanics of hemiarthroplasty in the natural hip joint. Med Eng Phys 33(1):96–105. https://doi.org/10.1016/j.medengphy.2010.09.009

    Article  PubMed  Google Scholar 

  30. Bachtar F, Chen X, Hisada T (2006) Finite element contact analysis of the hip joint. Med Biol Eng Comput 44(8):643–651. https://doi.org/10.1007/s11517-006-0074-9

    Article  PubMed  Google Scholar 

  31. Yoshida H, Faust A, Wilckens J, Kitagawa M, Fetto J, Chao EYS (2006) Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living. J Biomech 39(11):1996–2004. https://doi.org/10.1016/j.jbiomech.2005.06.026

    Article  CAS  PubMed  Google Scholar 

  32. Edidin AA, Kurtz SM (2000) Influence of mechanical behavior on the wear of 4 clinically relevant polymeric biomaterials in a hip simulator. J Arthroplasty 15(3):321–331. https://doi.org/10.1016/S0883-5403(00)90647-8

    Article  CAS  PubMed  Google Scholar 

  33. Gonzalez-Mora VA, Hoffmann M, Stroosnijder R, Gil FJ (2009) Wear tests in a hip joint simulator of different CoCrMo counterfaces on UHMWPE. Mater Sci Eng C 29(1):153–158. https://doi.org/10.1016/j.msec.2008.06.006

    Article  CAS  Google Scholar 

  34. Bracco P, Brach del Prever EM, Cannas M, Luda MP, Costa L (2006) Oxidation behaviour in prosthetic UHMWPE components sterilised with high energy radiation in a low-oxygen environment. Polym Degrad Stabl 91(9):2030–2038. https://doi.org/10.1016/j.polymdegradstab.2006.08.002

    Article  CAS  Google Scholar 

  35. Willie BM, Bloebaum RD, Ashrafi S, Dearden C, Steffensen T, Hofmann AA (2006) Oxidative degradation in highly cross-linked and conventional polyethylene after 2 years of real-time shelf aging. Biomaterials 27(10):2275–2284. https://doi.org/10.1016/j.biomaterials.2005.11.010

    Article  CAS  PubMed  Google Scholar 

  36. Boubakri A, Haddar N, Elleuch K, Bienvenu Y (2010) Impact of aging conditions on mechanical properties of thermoplastic polyurethane. Mater Des 31(9):4194–4201. https://doi.org/10.1016/j.matdes.2010.04.023

    Article  CAS  Google Scholar 

  37. Medel FJ, Rimnac CM, Kurtz SM (2009) On the assessment of oxidative and microstructure changes after in vivo degradation of historical UHMWPE knee components by means of vibrational spectroscopies and nanoindentation. J Biomed Mater Res A 89(2):530–538. https://doi.org/10.1002/jbm.a.31992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kusaba A, Kondo S, Mori Y, Kuroki Y (2008) In vivo change of elastic property in polyethylene acetabular components. Mod Rheumatol 18(2):140–145. https://doi.org/10.1007/s10165-008-0025-4

    Article  CAS  PubMed  Google Scholar 

  39. Kokubo T, Takadama H (2006) How useful in SBF in predicting in vivo bone bioactivity? Biomaterials 25(15):2907–2915

    Article  Google Scholar 

  40. Kang XQ, Zhang W, Yang CM (2016) Mechanical properties study of micro- and nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene composites. J Appl Polym Sci 133(3):42869. https://doi.org/10.1002/app.42869

    Article  CAS  Google Scholar 

  41. Costa L, Carpentieri I, Bracco P (2009) Post electron-beam irradiation oxidation of orthopaedic ultra-high molecular weight polyethylene (UHMWPE) stabilized with vitamin E. Polym Degrad Stabil 94(9):1542–1547. https://doi.org/10.1016/j.polymdegradstab.2009.04.023

    Article  CAS  Google Scholar 

  42. Bracco P, Brunella V, Zanetti M, Luda MP, Costa L (2007) Stabilisation of ultra-high molecular weight polyethylene with vitamin E. Polym Degrad Stabil 92(12):2155–2162. https://doi.org/10.1016/j.polymdegradstab.2007.02.023

    Article  CAS  Google Scholar 

  43. Bracco P, Oral E (2011) Vitamin E-stabilized UHMWPE for total joint implants: A review. Clin Orthop Relat Res 469(8):2286–2293. https://doi.org/10.1007/s11999-010-1717-6

    Article  PubMed  Google Scholar 

  44. Karuppiah KSK, Bruck AL, Sundararajan S, Wang J, Lin Z, Xu ZH, Li X (2008) Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity. Acta Biomater 4(5):1401–1410. https://doi.org/10.1016/j.actbio.2008.02.022

    Article  CAS  Google Scholar 

  45. Ren Y, Zhang ZY, Lan RT, Xu L, Gao Y, Zhao BS, Xu JZ, Gul RW, Li ZM (2019) Enhanced oxidation stability of highly cross-linked ultrahigh molecular weight polyethylene by tea polyphenols for total joint implants. Mat Sci Eng C 94:211–219. https://doi.org/10.1016/j.msec.2018.09.036

    Article  CAS  Google Scholar 

  46. Belotti LP, Vadivel HS, Emami N (2019) Tribological performance of hygrothermally aged UHMWPE hybrid composites. Tribol Int 138:150–156. https://doi.org/10.1016/j.triboint.2019.05.034

    Article  CAS  Google Scholar 

  47. Rowell SL, Muratoglu OK (2016) Investigation of surgically retrieved, vitamin E-stabilized, crosslinked UHMWPE implants after short-term in vivo service. J Biomed Mater Res Part B 104:1132–1140. https://doi.org/10.1002/jbm.b.33465

    Article  CAS  Google Scholar 

  48. Borruto A, Crivellone G, Marani F (1998) Influence of surface wettability on friction and wear test. Wear 222(1):57–65

    Article  CAS  Google Scholar 

  49. Wenzel RN (1949) Surface roughness and contact angle. J Phys Colloid Chem 53:1466–1467. https://doi.org/10.1021/j150474a015

    Article  CAS  Google Scholar 

  50. Wu G, Chen SK, Qin HL, Zhao CH (2012) Effect of wettability on tribological properties of porous UHMWPE. Adv Mat Res 549:670–673. https://doi.org/10.4028/ww.scientific.net/AMR.549.670

    Article  CAS  Google Scholar 

  51. Fu J, Jin ZM, Wang JW (2019) UHMWPE biomaterials for joint implants structures, properties and clinical performance. Elsevier, Oxford

    Book  Google Scholar 

  52. Gürgen S, Çelik ON, Kuşhan MC (2019) Tribological behavior of UHMWPE matrix composites reinforced with PTFE particles and aramid fibers. Compos Part B-Eng 173:106949. https://doi.org/10.1016/j.compositesb.2019.106949

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was founded by the Fundamental Research Funds for the Central Universities (grant numbers 2019XKQYMS17) and Open Sharing Fund for Large Instruments and Equipment of China University of Mining and Technology (DYGX-014). The authors would like to express their gratitude to EditSprings (https://www.editsprings.com/) for the expert linguistic services provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqin Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Zhang, P., Wang, T. et al. The role of simulated body fluid and force on the mechanical and tribological properties of α-tocopherol stabilized UHMWPE for biomedical applications. Polym. Bull. 78, 6517–6533 (2021). https://doi.org/10.1007/s00289-020-03438-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03438-3

Keywords

Navigation