Skip to main content
Log in

Development of chitosan membrane using non-toxic crosslinkers for potential wound dressing applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

There is a myriad of ways to crosslink hydrogel wound dressings; however, they require additional steps to remove the residue of the crosslinking agents, or their byproducts in biological environments are toxic. In this study, we studied and characterized the crosslinking of the chitosan hydrogels by various dicarboxylic acids, including oxalic acid, adipic acid, and sebacic acid under vacuum at 90 °C. The concentrations of the crosslinkers in the crosslinked hydrogels are tolerable for the cells, and the membranes can be used after crosslinking without complicated additional steps to remove the unreacted residues. The molar ratio of the crosslinkers was calculated based on the stoichiometry of the chitosan amine groups. Attenuated total reflectance Fourier transform infrared spectroscopy revealed amide linkage formation between amine groups of the chitosan and carboxyl groups of the dicarboxylic acids at 90 °C. The results showed that the chitosan membranes crosslinked with oxalic acid had higher Young's modulus (~ 1042 N/mm2) and ultimate tensile strength (~ 75 N/mm2) in comparison with the other dicarboxylic acids. Moreover, the membranes crosslinked with oxalic acid showed a weight loss of ~ 5.4% after 24 h at double-distilled water, which was drastically lower than that of the others. Thus, oxalic acid was selected as the most effective crosslinker. Cell viability assay, using mouse fibroblast (L929) cells, was conducted on the mechanically optimized membranes. The fibroblast cells successfully attached and spread well on the surface of the membranes. In conclusion, the obtained results suggested oxalic acid as an effective and non-toxic crosslinker for chitosan-based membranes for wound dressing applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Campos MG, Satsangi N, Rawls HR, Mei LH (2009) Chitosan cross‐linked films for drug delivery application. Paper presented at: macromolecular symposia

  2. Zuo P-P, Feng H-F, Xu Z-Z et al (2013) fabrication of biocompatible and mechanically reinforced graphene oxide–chitosan nanocomposite films. Chem Cent J 7(1):39–39

    Article  Google Scholar 

  3. Hsiao Y-C, Chen C-N, Chen Y-T, Yang T-L (2013) Controlling branching structure formation of the salivary gland by the degree of chitosan deacetylation. Acta Biomater 9(9):8214–8223

    Article  CAS  Google Scholar 

  4. Chien R-C, Yen M-T, Mau J-L (2016) Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr Polym 138:259–264

    Article  CAS  Google Scholar 

  5. Tachaboonyakiat W, Sukpaiboon E, Pinyakong O (2014) Development of an antibacterial chitin betainate wound dressing. Polym J 46(8):505–510

    Article  CAS  Google Scholar 

  6. Liu Z, Ge X, Lu Y, Dong S, Zhao Y, Zeng M (2012) Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films. Food Hydrocolloids 26(1):311–317

    Article  Google Scholar 

  7. Hattori H, Ishihara M (2015) Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan. Biomed Mater 10(1):015014

    Article  Google Scholar 

  8. Dashtimoghadam E, Mirzadeh H, Taromi FA, Nyström B (2013) Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery. Polymer 54(18):4972–4979

    Article  CAS  Google Scholar 

  9. Majedi FS, Hasani-Sadrabadi MM, VanDersarl JJ et al (2014) On-chip fabrication of paclitaxel-loaded chitosan nanoparticles for cancer therapeutics. Adv Funct Mater 24(4):432–441

    Article  CAS  Google Scholar 

  10. Meng X, Tian F, Yang J, He C-N, Xing N, Li F (2010) Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J Mater Sci Mater Med 21(5):1751–1759

    Article  CAS  Google Scholar 

  11. Karbasi S, Khorasani SN, Ebrahimi S, Khalili S, Fekrat F, Sadeghi D (2016) Preparation and characterization of poly(hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications. Adv Biomed Res 5:177

    Article  Google Scholar 

  12. Kojima K, Okamoto Y, Miyatake K, Kitamura Y, Minami S (1998) Collagen typing of granulation tissue induced by chitin and chitosan. Carbohydr Polym 37(2):109–113

    Article  CAS  Google Scholar 

  13. Ueno H, Mori T, Fujinaga T (2001) Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 52(2):105–115

    Article  CAS  Google Scholar 

  14. Benhabiles M, Salah R, Lounici H, Drouiche N, Goosen M, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids 29(1):48–56

    Article  CAS  Google Scholar 

  15. Dragostin OM, Samal SK, Dash M et al (2016) New antimicrobial chitosan derivatives for wound dressing applications. Carbohydr Polym 141:28–40

    Article  CAS  Google Scholar 

  16. Moghadas B, Dashtimoghadam E, Mirzadeh H, Seidi F, Hasani-Sadrabadi MM (2016) Novel chitosan-based nanobiohybrid membranes for wound dressing applications. RSC Adv 6(10):7701–7711

    Article  CAS  Google Scholar 

  17. Je J-Y, Kim S-K (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54(18):6629–6633

    Article  CAS  Google Scholar 

  18. Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71(2):235–244

    Article  CAS  Google Scholar 

  19. Kim S-K (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  20. López-Mata MA, Ruiz-Cruz S, Silva-Beltrán NP, Ornelas-Paz JJ, Zamudio-Flores PB, Burruel-Ibarra SE (2013) Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules 18(11):13735–13753

    Article  Google Scholar 

  21. Fernandez-Saiz P, Lagaron J, Ocio M (2009) Optimization of the film-forming and storage conditions of chitosan as an antimicrobial agent. J Agric Food Chem 57(8):3298–3307

    Article  CAS  Google Scholar 

  22. Li Q, Dunn E, Grandmaison E, Goosen M (1992) Applications and properties of chitosan. J Bioact Compat Polym 7(4):370–397

    Article  CAS  Google Scholar 

  23. Kamoun EA, Chen X, Eldin MSM, Kenawy E-RS (2015) Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8(1):1–14

    Article  CAS  Google Scholar 

  24. Elsner JJ, Shefy-Peleg A, Zilberman M (2010) Novel biodegradable composite wound dressings with controlled release of antibiotics: microstructure, mechanical and physical properties. J Biomed Mater Res B Appl Biomater 93(2):425–435

    Article  Google Scholar 

  25. Cai M, Gong J, Cao J, Chen Y, Luo X (2013) In situ chemically crosslinked chitosan membrane by adipic acid. J Appl Polym Sci 128(5):3308–3314

    Article  CAS  Google Scholar 

  26. Muzzarelli RA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77(1):1–9

    Article  CAS  Google Scholar 

  27. Chen P-H, Kuo T-Y, Liu F-H et al (2008) Use of dicarboxylic acids to improve and diversify the material properties of porous chitosan membranes. J Agric Food Chem 56(19):9015–9021

    Article  CAS  Google Scholar 

  28. ASTM D882-18 (2018) Standard test method for tensile properties of thin plastic sheeting. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D0882-18www.astm.org.

  29. Jamalpoor Z, Mirzadeh H, Joghataei MT, Zeini D, Bagheri-Khoulenjani S, Nourani MR (2015) Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering. J Biomed Mater Res Part A 103(5):1882–1892

    Article  Google Scholar 

  30. Bonakdar S, Emami SH, Shokrgozar MA, Farhadi A, Ahmadi SAH, Amanzadeh A (2010) Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Mater Sci Eng C 30(4):636–643

    Article  CAS  Google Scholar 

  31. ISO B. 10993-5 (1999) Biological evaluation of medical devices. Tests for in vitro cytotoxicity

  32. Sadeghi D, Karbasi S, Razavi S, Mohammadi S, Shokrgozar MA, Bonakdar S (2016) Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering. J Appl Polym Sci. https://doi.org/10.1002/app.44171

    Article  Google Scholar 

  33. Mansouri M, Nazarpak MH, Solouk A, Akbari S, Hasani-Sadrabadi MM (2017) Magnetic responsive of paclitaxel delivery system based on SPION and palmitoyl chitosan. J Magn Magn Mater 421:316–325

    Article  CAS  Google Scholar 

  34. Yalçınkaya S, Demetgül C, Timur M, Çolak N (2010) Electrochemical synthesis and characterization of polypyrrole/chitosan composite on platinum electrode: its electrochemical and thermal behaviors. Carbohydr Polym 79(4):908–913

    Article  Google Scholar 

  35. Ritthidej GC, Phaechamud T, Koizumi T (2002) Moist heat treatment on physicochemical change of chitosan salt films. Int J Pharm 232(1):11–22

    Article  CAS  Google Scholar 

  36. Ghosh A, Ali MA (2012) Studies on physicochemical characteristics of chitosan derivatives with dicarboxylic acids. J Mater Sci 47(3):1196–1204

    Article  CAS  Google Scholar 

  37. Tsao CT, Chang CH, Li YD et al (2011) Development of chitosan/dicarboxylic acid hydrogels as wound dressing materials. J Bioact Compat Polym 26(5):519–536

    Article  CAS  Google Scholar 

  38. Szymańska E, Winnicka K (2015) Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Mar Drugs 13(4):1819–1846

    Article  Google Scholar 

  39. Güneş S, Tıhmınlıoğlu F (2017) Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int J Biol Macromol 102:933–943

    Article  Google Scholar 

  40. Tığlı RS, Karakeçili A, Gümüşderelioğlu M (2007) In vitro characterization of chitosan scaffolds: influence of composition and deacetylation degree. J Mater Sci Mater Med 18(9):1665–1674

    Article  Google Scholar 

  41. Ma J, Wang H, He B, Chen J (2001) A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 22(4):331–336

    Article  CAS  Google Scholar 

  42. Tyliszczak B, Drabczyk A, Kudłacik-Kramarczyk S, Bialik-Wąs K, Sobczak-Kupiec A (2017) In vitro cytotoxicity of hydrogels based on chitosan and modified with gold nanoparticles. J Polym Res 24(10):153

    Article  Google Scholar 

  43. Tyliszczak B, Drabczyk A, Kudłacik-Kramarczyk S, Bialik-Wąs K, Kijkowska R, Sobczak-Kupiec A (2017) Preparation and cytotoxicity of chitosan-based hydrogels modified with silver nanoparticles. Colloids Surf B 160:325–330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to Iran National Science Foundation (INSF) for supporting this research and Ms. Sama Ghalei for her openhanded support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Moghadas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadas, B., Solouk, A. & Sadeghi, D. Development of chitosan membrane using non-toxic crosslinkers for potential wound dressing applications. Polym. Bull. 78, 4919–4929 (2021). https://doi.org/10.1007/s00289-020-03352-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03352-8

Keywords

Navigation