Skip to main content
Log in

Impact of Gamma Radiation and Rice Husk Nanosilica on the Physico-Mechanical Properties of Styrene Butadiene Rubber/Natural Rubber Blend

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Silica is the major inorganic constituent of the rice husk. High-surface area amorphous silica, Extracted Nanosilica (ENS), was developed by washing out the rice husk, followed by combustion and finally chemically treated. ENS was characterized by FTIR, XRD and TEM techniques. Reinforcement of natural rubber (NR)/styrene butadiene rubber (SBR) blend with varying ratio of ENS, namely 5, 10 and 20 phr, and separately with 20 phr Hisil (commercial silica) was established. Vulcanization of the produced composites was applied by gamma irradiation at a total dose range from 50 to 200 kGy. The radiation-cured nanocomposites were examined via mechanical, physical and thermal investigations. The SEM micrographs affirmed the homogenous distribution of silica particles throughout the polymer matrices. The results ensured noticeable enhancement in the investigated properties of the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rafiee E, Shahebrahimi S, Feyzi M, Shaterzadeh M (2012) Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material). J Int Nano Lett 2:29–37. https://doi.org/10.1186/2228-5326-2-29

    Article  Google Scholar 

  2. Liou T (2004) Preparation and characterization of nano-structured silica from rice husk. Mater Sci and Eng A 364:313–323. https://doi.org/10.1016/j.msea.2003.08.045

    Article  CAS  Google Scholar 

  3. Chen Y, Nie J, Xu C, Wu W, Zheng Z (2020) Strengthened, recyclable, weldable and conducting-controllable bio-based rubber film with continuous water-soluble framework network. ACS Sustain Chem Eng 8(2):1285–1294. https://doi.org/10.1021/acssuschemeng.9b06644

    Article  CAS  Google Scholar 

  4. Cao L, Fan J, Huang J, Chen Y (2019) Robust and stretchable cross-linked rubber network with recyclable and selfhealable capabilities based on dynamic covalent bonds. Mater Chem A 7:4922–4933. https://doi.org/10.1039/C8TA11587G

    Article  CAS  Google Scholar 

  5. Ghosh OSN, Gayathri S, Sudhakara P, Misra SK, Jayaramudu J (2017) Natural rubber nanoblends: preparation, characterization and applications. J Poly Compos Mater. https://doi.org/10.1007/978-3-319-48720-5_2

    Article  Google Scholar 

  6. Moustafa AB, Mounir R, El Miligy AA, Mohamed MA (2011) Effect of gamma irradiation on the properties of natural rubber/styrene butadiene rubber blends. Arab J Chem. https://doi.org/10.1016/j.arabjc.2011.02.020

    Article  Google Scholar 

  7. Cao L, Huang J, Chen Y (2018) Dual cross-linked epoxidized natural rubber reinforced by tunicate cellulose nanocrystals with improved strength and extensibility. ACS Sustain Chem Eng 6(11):14802–14811. https://doi.org/10.1021/acssuschemeng.8b03331

    Article  CAS  Google Scholar 

  8. Liu Y, Cao L, Yuan D, Chen Y (2018) Design of super-tough co-continuous PLA/NR/SiO2 TPVs with balanced stiffness-toughness based on reinforced rubber and interfacial compatibilization. Compos Sci Technol 165:231–239. https://doi.org/10.1016/j.compscitech.2018.07.005

    Article  CAS  Google Scholar 

  9. Fathy ES, Saleh HH, Elnaggar MY, Ali ZI (2015) Gamma Irradiation of (Styrene Butadiene Rubber)/(Devulcanized Waste Rubber) Blends Modified by Organoclay. J Vinyl Addit Technol 24:50–57. https://doi.org/10.1002/vnl.21524

    Article  CAS  Google Scholar 

  10. Hassan M, Badway N, Gamal A, Elnaggar M, Hegazy E (2010) Studies on mechanical, thermal and morphological properties of irradiated recycled polyamide and waste rubber powder blends. Nuc Instr Meth Phys Res B 268:1427–1434. https://doi.org/10.1016/j.nimb.2010.01.021

    Article  CAS  Google Scholar 

  11. Yao F, Wu Q, Lei Y, Xu Y (2008) Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading. Indus crops prod 28:63–72. https://doi.org/10.1016/j.indcrop.2008.01.007

    Article  CAS  Google Scholar 

  12. Dominic CDM, Begum PMS, Joseph R, Joseph D, Kumar P, Ayswarya EP (2013) Synthesis, characterization and application of rice husk nanosilica in natural rubber. Inter J Sci EnvironTechnol 2:1027–1035

    Google Scholar 

  13. Kalapathy U, Proctor A, Shultz J (2000) A simple method for production of pure silica from rice hull ash. Bioreso Tech 73:257–262. https://doi.org/10.1016/S0960-8524(99)00127-3

    Article  CAS  Google Scholar 

  14. Sharifnasab H, Alamooti MY (2017) Preparation of silica powder from rice husk. Eng Res Inst 19:158–161

    Google Scholar 

  15. Jembere AL, Fanta SW (2017) Studies on the synthesis of silica powder from rice husk ash as reinforcement filler in rubber tire tread part: replacement of commercial precipitated Silica. Inter J Mater Sci App 6:37–44. https://doi.org/10.11648/j.ijmsa.20170601.16

    Article  CAS  Google Scholar 

  16. Srivastava SK, Mishra YK (2018) Nanocarbon reinforced rubber nanocomposites: detailed insights about mechanical, dynamical mechanical properties, payne, and mullin effects. Nanomaterials 8:945–1001

    Article  Google Scholar 

  17. Abdul Salim ZAS, Hassan A, Ismail H (2018) The effect of high purity rice husk silica synthesized using solvent-thermal extraction method on the properties of natural rubber compounds. BioRes 13:6936–6951. https://doi.org/10.15376/biores.13.3.6936-6951

    Article  CAS  Google Scholar 

  18. Mohamed RM, Mohamed MA, Shaltout NA (2019) Improving the mechanical properties of ethylene propylene diene monomer rubber/low density polyethylene/rice husk biocomposites by using various additives of filler and gamma irradiation. J Vinyl Add Tech 25:296–302. https://doi.org/10.1002/vnl.21694

    Article  CAS  Google Scholar 

  19. Zurina M, Ismailand H, Ratnam CT (2006) Characterization of irradiation-induced crosslink of epoxidised natural rubber/ethylene vinyl acetate (ENR-50/EVA) blend. Poly Degr Stab 91:2723

    Article  CAS  Google Scholar 

  20. Mohamed RM, Khaled FE, Raslan HA (2019) Properties of ethylene propylene diene rubber/white and black filler composites cured by gamma radiation in presence of sorbic acid. J Macro Sci Part A Pure and Appl Chem 56:429–442. https://doi.org/10.1080/10601325.2019.1581574

    Article  CAS  Google Scholar 

  21. Raslan HA, El-Saied HA, Mohamed RM, Yousif NM (2019) Gamma radiation induced fabrication of styrene butadiene rubber/magnetite nanocomposites for positive temperature coefficient thermistors application. Comp Part B 176:107326. https://doi.org/10.1016/j.compositesb.2019.107326

    Article  CAS  Google Scholar 

  22. Guo L, Huang G, Zheng J, Li G (2014) Effect of nanosilica on thermal oxidative degradation of SBR. J Therm Anal Calorim 116:359–366. https://doi.org/10.1007/s10973-013-3522-4

    Article  CAS  Google Scholar 

  23. Cuong MV, Huong TV, Hyoung JC (2015) fabrication of natural rubber/epoxidized natural rubber/nanosilica nanocomposites and their physical characteristics. Macro Res 23:284–290. https://doi.org/10.1007/s13233-015-3040-2

    Article  CAS  Google Scholar 

  24. Choi S, SonC E (2016) Influence of silane coupling agent on bound rubber formation of NR/SBR blend compounds reinforced with carbon black. Polym Bull 73:453–3464

    Article  Google Scholar 

  25. Yongyue L, Chunfang F, Qinghuang W, Zhifeng Y, Quanfang Q, Kong L, Zheng P (2013) Preparation and characterization of natural rubber/silica nanocomposites using rule of similarity in latex. Tech Mater Sci Ed 28:997–1002. https://doi.org/10.1007/s11595-013-0807-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Mounir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mounir, R., Raslan, H.A. & Mohamed, M.A. Impact of Gamma Radiation and Rice Husk Nanosilica on the Physico-Mechanical Properties of Styrene Butadiene Rubber/Natural Rubber Blend. Polym. Bull. 78, 3851–3868 (2021). https://doi.org/10.1007/s00289-020-03303-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03303-3

Keywords

Navigation