Skip to main content
Log in

Preparation, characterization and biodegradation of blend films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with natural biopolymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Blending of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) with natural polymer is one of alternative routes to improve the mechanical properties and reduce the cost of raw materials. Such blending is interesting to be implemented in packaging industry due to the low-cost materials, sustainable and eco-friendly. Therefore, in this study, P(3HB-co-6%3HV) copolymers synthesized by Cupriavidus malaysiensis USMAA2-4 were blended with different ratios of starch, cellulose or alginate through solvent casting technique. Hydrophilicity analysis revealed the density, water-absorption capacity and solubility of blend films increased proportionally with the increasing ratio of natural polymers. The degradation of the blend films was investigated in soil and lake. The highest percentage of degradation in the soil and lake were observed on the blend films containing starch and alginate, respectively. Meanwhile, blending of P(3HB-co-6%3HV) with cellulose has shown the lowest percentage of degradation on both locations. The blend films with 50:50 wt:wt% ratio of P(3HB-co-6%3HV): natural polymer from both locations was used for isolation of microbial degraders of poly(3-hydroxybutyrate) P(3HB), starch, cellulose or alginate. The PHAs degraders were identified from genus Cupriavidus, Acidovorax, Variovora, Streptomyces and Ideonella and two starch degraders were identified from genus Moraxella and Alcaligenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Keshavarz TIR (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13(3):321–326. https://doi.org/10.1016/j.mib.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  2. Gómez-Cardozo JR, Mora-Martínez AL, Pérez MY, Correa-Londoño GA (2016) Production and characterization of polyhydroxyalkanoates and native microorganisms synthesized from fatty waste. Int J Polym Sci 2016:1–12. https://doi.org/10.1155/2016/6541718

    Article  CAS  Google Scholar 

  3. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619. https://doi.org/10.1016/j.procbio.2004.01.053

    Article  CAS  Google Scholar 

  4. Volova TG, Boyandin AN, Gladyshev MI, Gitelson II, Prudnikova SV (2015) Biodegradation of polyhydroxyalkanoates in natural water environments. J Sib Fed Univ Biol 8(2):168–186. https://doi.org/10.17516/1997-1389-2015-8-2-168-186

    Article  Google Scholar 

  5. Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 6(9):246–250. https://doi.org/10.1016/0167-7799(87)90100-4

    Article  Google Scholar 

  6. Choi J, Lee SY (1999) High-level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl Environ Microbiol 65(10):4363–4368 (PMID: 10508061)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Q, Zhang H, Deng B, Zhao X (2014) Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate): structure, property, and fiber. Int Biodeter Biodegr 2014:1–11. https://doi.org/10.1155/2014/374368

    Article  CAS  Google Scholar 

  8. Mitomo Y, Morishita N, Doi Y (1993) Composition range of crystal phase transition of isodimorphism in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules 26(21):5809–5811. https://doi.org/10.1021/ma00073a041

    Article  CAS  Google Scholar 

  9. Zibiao L, Jing Y, Xian JL (2016) Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater 8:1–20. https://doi.org/10.1038/am.2016.48

    Article  CAS  Google Scholar 

  10. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503–1555. https://doi.org/10.1016/S0079-6700(00)00035-6

    Article  CAS  Google Scholar 

  11. Qu XH, Wu Q, Zhang KY, Chen GQ (2006) In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials 27(19):3540–3548. https://doi.org/10.1016/j.biomaterials.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  12. Chuensangjun C, Pechyen C, Sirisansaneeyaku C (2013) Degradation behaviors of different blends of polylactic acid buried in soil. Energy Procedia 34(2013):73–82. https://doi.org/10.1016/j.egypro.2013.06.735

    Article  CAS  Google Scholar 

  13. Reddy SG, Pandit AS (2013) Biodegradable sodium alginate and lignosulphonic acid blends: characterization and swelling studies. Polímeros 23(1):13–18. https://doi.org/10.1590/S0104-14282013005000006

    Article  CAS  Google Scholar 

  14. Ummartyotin S, Pechyen C (2016) Microcrystalline-cellulose and polypropylene based composite: a simple, selective and effective material for microwavable packaging. Carbohyd Polym 142(2016):133–140. https://doi.org/10.1016/j.carbpol.2016.01.020

    Article  CAS  Google Scholar 

  15. Vroman I, Tighzert L (2009) Biodegradable polymers. Sci Med 2(2):307–344. https://doi.org/10.3390/ma2020307

    Article  CAS  Google Scholar 

  16. Shantini K, Yahya ARM, Amirul A (2012) Empirical modeling development for integrated process optimization of poly (3-hydrxybutyrate-co-3-hydroxyvalerate) production. J Appl Polym Sci 125:2155–2162. https://doi.org/10.1002/app.36345

    Article  CAS  Google Scholar 

  17. Rennukka M, Amirul AA (2013) Fabrication of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/chitosan blend material: synergistic effects on physical, chemical, thermal and biological properties. Polym Bull 70(6):1937–1957. https://doi.org/10.1007/s00289-012-0895-7

    Article  CAS  Google Scholar 

  18. Nursolehah AA, Kai-Hee H, Coswald SS, Amirul AA (2017) A fed-batch strategy to produce high poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer yield with enhanced mechanical properties in bioreactor. Bioprocess Biosyst Eng 40:1643–1656. https://doi.org/10.1007/s00449-017-1820-0

    Article  CAS  Google Scholar 

  19. Godbole S, Gote S, Latkar M, Chakrabarti T (2003) Preparation and characterization of biodegradable poly-3-hydroxybutyrate-starch blend films. Bioresour Technol 86(1):33–37. https://doi.org/10.1016/S0960-8524(02)00110-4

    Article  CAS  PubMed  Google Scholar 

  20. Salim YS, Sharon A, Vigneswari S, Mohamad-Nasir MI, Amirul AA (2012) Environmental degradation of microbial polyhydroxyalkanoates and oil palm-based composites. Appl Biochem Biotechnol 16:314–326. https://doi.org/10.1007/s12010-012-9688-6

    Article  CAS  Google Scholar 

  21. Zhijiang C, Chengwei H, Guang Y (2012) Poly(3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatibility evaluation. Carbohydr Polym 87(2):1073–1080. https://doi.org/10.1016/j.carbpol.2011.08.037

    Article  CAS  Google Scholar 

  22. Maekawa M, Pearce R, Marchessault RH, Manley RSJ (1999) Miscibility and tensile properties of poly (β-hydroxybutyrate)-cellulose propionate blends. Polymer 40(6):1501–1505. https://doi.org/10.1016/S0032-3861(98)00359-0

    Article  CAS  Google Scholar 

  23. Tanase EE, Popa ME, Râpă M, Popa O (2015) PHB/Cellulose fibers based materials: physical, mechanical and barrier properties. Agric Agric Sci Procedia 6(2015):608–615. https://doi.org/10.1016/j.aaspro.2015.08.099

    Article  Google Scholar 

  24. Bhardwaj U, Dhar P, Kumar A, Katiyar V (2014) Polyhydroxyalkanoates (PHA)-cellulose based nanobiocomposites for food packaging applications. In: Society AC (ed) Food additives and packaging, vol 1162. ACS Symposium Series, Washington, pp 275–314

    Chapter  Google Scholar 

  25. Fontes LCB, Ramos KK, Sivi TC, Queiroz FPC (2011) Biodegradable edible films from renewable sources-potential for their application in fried foods. Am J Food Technol 6(7):555–567. https://doi.org/10.3923/ajft.2011.555.567

    Article  CAS  Google Scholar 

  26. Rahman N, Chandra D, Parvin B (2017) Preparation and property analysis of biodegradable packaging film from alginate, starch and citric acid. J Polym Sci Technol 2(1):20–35 (ISSN: 2550-1917)

    Google Scholar 

  27. Innocentini-Mei LH, Bartoli JR, Baltieri RC (2003) Mechanical and thermal properties of poly(3-hydroxybutyrate) blends with starch and starch derivatives. Micromol Symp 197:77–87. https://doi.org/10.1002/masy.200350708

    Article  CAS  Google Scholar 

  28. Imam SH, Gordon SH, Shogren RL, Tosteson TR, Govind NS, Greene RV (1999) Degradation of starch-poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) bioplastic in tropical coastal waters. Appl Environ Microbiol 65(2):431–437 (PMID: 9925564)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sergey Z, Irina PS, Halina G, Maciej M (2019) Nanocrystalline titanium. In: Halina G, Sergey Z, Irina PS, Maciej M (eds) Micro and nano technologies, vol 2019. Elsevier, Amsterdam, pp 103–121

    Google Scholar 

  30. Tosin M, Weber M, Siotto M, Lott C, Innocenti FD (2012) Laboratory test methods to determine the degradation of plastics in marine environmental conditions. Front Microbiol 3(225):1–9. https://doi.org/10.3389/fmicb.2012.00225

    Article  Google Scholar 

  31. Lai SM, Sun WW, Don TM (2015) Preparation and characterization of biodegradable polymer blends from poly(3-hydroxybutyrate)/poly(vinyl acetate)-modified corn starch. Polym Eng Sci 2015:1321–1329. https://doi.org/10.1002/pen.24071

    Article  CAS  Google Scholar 

  32. Zou GX, Jin PQ, Xin LZ (2008) Extruded starch/PVA composites: water resistance, thermal properties, and morphology. J Elastom Plast 40(4):303–316. https://doi.org/10.1177/0095244307085787

    Article  CAS  Google Scholar 

  33. Tajvidi M, Ebrahimi G (2003) Water uptake and mechanical characteristics of natural filler–polypropylene composites. J Appl Polym Sci 8:941–946. https://doi.org/10.1002/app.12029

    Article  CAS  Google Scholar 

  34. Aramwit P (2016) Introduction to biomaterials for wound healing. In: Ågren MS (ed) Wound Healing Biomaterials, vol 2. Elsevier Ltd, Amsterdam, pp 3–38. https://doi.org/10.1016/B978-1-78242-456-7.00001-5

    Chapter  Google Scholar 

  35. Gupta P, Samant K, Sahu A (2012) Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int J Microbiol 2012:1–5. https://doi.org/10.1155/2012/578925

    Article  CAS  Google Scholar 

  36. Alariya SS, Sethi S, Gupta S, Gupta BL (2013) Amylase activity of a starch degrading bacteria isolated from soil. Arch Appl Sci Res 5(1):15–24

    CAS  Google Scholar 

  37. Jain S, Ohman DE (2005) Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect Immun 73(10):6429–6436. https://doi.org/10.1128/IAI.73.10.6429-6436.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Altaee N, El-Hiti GA, Fahdil A, Sudesh K, Yousif E (2016) Biodegradation of different formulations of polyhydroxybutyrate films in soil. SpringerPlus 5(1):1–12. https://doi.org/10.1186/s40064-016-2480-2

    Article  CAS  Google Scholar 

  39. Azahari NA, Othman N, Ismail H (2011) Biodegradation studies of polyvinyl alcohol/corn starch blend films in solid and solution media. J Phys Sci 22(2):15–31

    CAS  Google Scholar 

  40. Lopez-Llorca LV, Colom Valiente MF (1993) Study of biodegradation of starch-plastic films in soil using scanning electron microscopy. Micron 24(5):457–463. https://doi.org/10.1016/0968-4328(93)90024-U

    Article  CAS  Google Scholar 

  41. Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1993) Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl Environ Microbiol 59(10):3233–3238 (PMCID: PMC182442)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fernando WC, Suyama K, Itoh K, Tanaka H, Yamamoto H (2002) Biodegradability of acylated starch-plastic in four types of soil. Environ Sci 15(2):95–102. https://doi.org/10.11353/sesj1988.15.95

    Article  Google Scholar 

  43. Guarino V, Caputo T, Altobelli R, Ambrosio L (2015) Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Mater Sci 2(4):497–502. https://doi.org/10.3934/matersci.2015.4.497

    Article  Google Scholar 

  44. Ikejima T, Yoshie N, Inoue Y (1999) Influence of tacticity and molecular weight of poly(vinyl alcohol) on crystallization and biodegradation of poly(3 hydroxybutyric acid)/poly(vinyl alcohol) blend films. Polym Degrad Stab 66(1999):263–270. https://doi.org/10.1016/S0141-3910(99)00076-2

    Article  CAS  Google Scholar 

  45. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotehnol 82(2007):233–247. https://doi.org/10.1002/jctb.1667

    Article  CAS  Google Scholar 

  46. Salim SS, Amirul AA, Coswald SS, Muhammad-Nasir MI (2011) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and characterisation of its blend with oil palm empty fruit bunch fibers. Bioresour Technol 102(3):3626–3628. https://doi.org/10.1016/j.biortech.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  47. Vigneswari S, Lee TS, Bhubalan K, Amirul AA (2015) Extracellular polyhydroxyalkanoate depolymerase by Acidovorax sp. DP5. Enzyme Res 2015:1–8. https://doi.org/10.1155/2015/212159

    Article  CAS  Google Scholar 

  48. Boyandin AN, Prudnikova SV, Filipenko ML, Khrapov EA, Vasil’ev AD, Volova TG (2012) Biodegradation of polyhydroxyalkanoates by soil microbial communities of different structures and detection of PHA degrading microorganisms. Appl Biochem Micro 48:28–36. https://doi.org/10.1134/S0003683812010024

    Article  CAS  Google Scholar 

  49. Mabrouk MM, Sabry SA (2001) Degradation of poly (3-hydroxybutyrate) and its copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by a marine Streptomyces sp. SNG9. Microbiol Res 156:323–335. https://doi.org/10.1078/0944-5013-00115

    Article  CAS  PubMed  Google Scholar 

  50. Yashchuk O, Miyazaki SS, Hermida E (2014) PHB-degrading Streptomyces sp. SSM 5670: isolation, characterization and PHB-accumulation. J Pure Appl Microbiol 8(4):2823–2830

    CAS  Google Scholar 

  51. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyoha K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate. Science 351(6278):1196–1199. https://doi.org/10.1126/science.aad6359

    Article  CAS  PubMed  Google Scholar 

  52. Vaz-Moreira I, Silva MM, Manaia CM, Nunes O (2008) Diversity of bacterial isolates from commercial and homemade composts. Microb Ecol 55(4):714–722. https://doi.org/10.1007/s00248-007-9314-2

    Article  PubMed  Google Scholar 

  53. Veetil AKT, James J, Sujith S, Joy D, Lipin DMS, Thankamani V (2012) Characterization of Alcaligenes faecalis GPA-1 producing thermostable extracellular α-amylase. Res Biotechnol 3(4):19–27. https://doi.org/10.1007/s00248-007-9314-2

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to express thanks to Research University Grant (RUI) (Grant number: 1001/PBIOLOGI/8011067), USM for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Amirul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syahirah, W.N., Azami, N.A., Huong, KH. et al. Preparation, characterization and biodegradation of blend films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with natural biopolymers. Polym. Bull. 78, 3973–3993 (2021). https://doi.org/10.1007/s00289-020-03286-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03286-1

Keywords

Navigation