Skip to main content

Advertisement

Log in

Development and characterization of antibacterial hydroxyapatite coated with mangosteen extract for bone tissue engineering

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAp) has recently attracted increased interest as a promising material with a wide variety of biomedical applications in orthopedics and dentistry. Meanwhile, bone tissue engineering has not been widely adopted in clinical practice because of the prevalence of postoperative infections. Therefore, enhancing the potential of HAp with antimicrobial agents would be an optional way of preventing bacteria persistence in chronic or long-term infections. Xanthone substance obtained as a mangosteen (MG) extract inhibited a broad spectrum of bacteria that slowed recovery of injury and wounds. Scanning electron microscopy was used to characterize the surface morphology of MG-coated HAp granules, whereas in vitro studies tested the antibacterial susceptibility of bacterial strains usually involved in wound infection. MG-coated HAp granules strongly inhibited bacterial growth with a clear zone after 24 h in time-kill tests. Cytotoxicity was investigated to assess the viability of MC3T3-E1 cells. Results indicated positive mineralization of MC3T3-E1 cells. MG-coated HAp granules were successfully produced and showed potential for bone tissue engineering applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tavafoghi M, Brodusch N, Gauvin R, Cerruti M (2016) Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid. J R Soc Interface 13(114):20150986

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zapanta LeGeros R, Ito A, Ishikawa K, Sakae T, Legeros J (2010) Fundamentals of hydroxyapatite and related calcium phosphates. Adv Biomater Fundam Process Appl. https://doi.org/10.1002/9780470891315.ch2

    Article  Google Scholar 

  3. Pryor LS, Gage E, Langevin C-J, Herrera F, Breithaupt AD, Gordon CR et al (2009) Review of bone substitutes. Craniomaxillofac Trauma Reconstr 2(3):151–160

    PubMed  PubMed Central  Google Scholar 

  4. Yoshikawa H, Myoui A (2005) Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 8(3):131–136

    CAS  PubMed  Google Scholar 

  5. Hardy P, Kania R, Verliac S, Lortat-Jacob A, Benoit J (1997) Infection following the use of porous hydroxyapatite ceramic as a bone defect filler in articular fractures. Eur J Orthop Surg Traumatol 7(2):63–67

    Google Scholar 

  6. Kolmas J, Groszyk E, Kwiatkowska R (2014) Substituted hydroxyapatites with antibacterial properties. Biomed Res Int 2014:178123

    PubMed  PubMed Central  Google Scholar 

  7. Pandey A, Midha S, Sharma RK, Maurya R, Nigam VK, Ghosh S et al (2018) Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications. Mat Sci Eng C 88:13–24

    CAS  Google Scholar 

  8. Ohsumi Y, Kitamoto K, Anraku Y (1988) Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion. J Bacteriol 170(6):2676–2682

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stanić V, Dimitrijević S, Antić-Stanković J, Mitrić M, Jokić B, Plećaš IB et al (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. ApSS 256(20):6083–6089

    Google Scholar 

  10. Ghuman S, Ncube B, Finnie JF, McGaw LJ, Coopoosamy RM, Van Staden J (2016) Antimicrobial activity, phenolic content, and cytotoxicity of medicinal plant extracts used for treating dermatological diseases and wound Healing in KwaZulu-Natal. South Afr Front Pharmacol 7:320

    Google Scholar 

  11. Chen L-G, Yang L-L, Wang C-C (2008) Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem Toxicol 46(2):688–693

    CAS  PubMed  Google Scholar 

  12. Mohamed GA, Ibrahim SRM, Shaaban MIA, Ross SA (2014) Mangostanaxanthones I and II, new xanthones from the pericarp of Garcinia mangostana. Fitoterapia 98:215–221

    CAS  PubMed  Google Scholar 

  13. Shan T, Ma Q, Guo K, Liu J, Li W, Wang F (2011) Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Curr Mol Med 11(8):666–677

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pinto MMM, Sousa ME, Nascimento MSJ (2005) Xanthone derivatives: new insights in biological activities. Curr Med Chem 12(21):2517–2538

    CAS  PubMed  Google Scholar 

  15. Kaomongkolgit R, Jamdee K, Pumklin J, Pavasant P (2013) Laboratory evaluation of the antibacterial and cytotoxic effect of alpha-mangostin when used as a root canal irrigant. Indian J Dent 4(1):12–17

    Google Scholar 

  16. Chomnawang MT, Surassmo S, Wongsariya K, Bunyapraphatsara N (2009) Antibacterial activity of Thai medicinal plants against methicillin-resistant staphylococcus aureus. Fitoterapia 80(2):102–104

    CAS  PubMed  Google Scholar 

  17. Pedraza-Chaverri J, Cárdenas-Rodríguez N, Orozco-Ibarra M, Pérez-Rojas JM (2008) Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol 46(10):3227–3239

    CAS  PubMed  Google Scholar 

  18. Liu Q-Y, Wang Y-T, Lin L-G (2015) New insights into the anti-obesity activity of xanthones from Garcinia mangostana. Food Funct 6(2):383–393

    CAS  PubMed  Google Scholar 

  19. Boonmak N, Niyompanich J, Chuysinuan P, Niamlang P, Ekabutr P, Supaphol P (2018) Preparation of mangosteen extract-loaded poly(vinyl acetate) for use as an antibacterial spray-on dressing. J Drug Deliv Sci Technol 46:322–329

    CAS  Google Scholar 

  20. Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P (2013) Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 452(1):333–343

    CAS  PubMed  Google Scholar 

  21. Li J, Xie S, Ahmed S, Wang F, Gu Y, Zhang C et al (2017) Antimicrobial activity and resistance: influencing factors. Front Pharmacol 8:364

    PubMed  PubMed Central  Google Scholar 

  22. Suksamrarn S, Suwannapoch N, Phakhodee W, Thanuhiranlert J, Ratananukul P, Chimnoi N et al (2003) Antimycobacterial activity of prenylated xanthones from the fruits of garcinia mangostana. Chem Pharm Bull (Tokyo) 51(7):857–859

    CAS  Google Scholar 

  23. Palakawong C, Sophanodora P, Pisuchpen S, Phongpaichit S (2010) Antioxidant and antimicrobial activities of crude extracts from mangosteen (Garcinia mangostana L.) parts and some essential oils. Int Food Res J 17:583–589

    CAS  Google Scholar 

  24. Suba V, Rathika G, Ranjith Kumar E, Saravanabhavan M, Badavath VN, Thangamani KS (2019) Enhanced adsorption and antimicrobial activity of fabricated Apocynaceae leaf waste activated carbon by cobalt ferrite nanoparticles for textile effluent treatment. J Inorg Organomet Polym Mater 2019:1–14

    Google Scholar 

  25. Parameswaran S, Verma RS (2011) Scanning electron microscopy preparation protocol for differentiated stem cells. AnBio 416(2):186–190

    CAS  Google Scholar 

  26. Hazrin-Chong NH, Manefield M (2012) An alternative SEM drying method using hexamethyldisilazane (HMDS) for microbial cell attachment studies on sub-bituminous coal. J Microbiol Methods 90(2):96–99

    CAS  PubMed  Google Scholar 

  27. Kim H-W, Knowles JC, Kim H-E (2004) Development of hydroxyapatite bone scaffold for controlled drug release via poly(ϵ-caprolactone) and hydroxyapatite hybrid coatings. J Biomed Mater Res B Appl Biomater 70B(2):240–249

    CAS  Google Scholar 

  28. Ringertz S, Rylander M, Kronvall G (1991) Disk diffusion method for susceptibility testing of Neisseria gonorrhoeae. J Clin Microbiol 29(8):1604–1609

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: A review. J Pharmaceut Anal 6(2):71–79

    Google Scholar 

  30. Mesquita-Guimarães J, Detsch R, Souza AC, Henriques B, Silva FS, Boccaccini AR, Carvalho O (2020) Cell adhesion evaluation of laser-sintered HAp and 45S5 bioactive glasscoatings on micro-textured zirconia surfaces using MC3T3-E1 osteoblast-like cells. Mater Sci Eng C 109:110492

    Google Scholar 

  31. Osathanon T, Sawangmake C, Ruangchainicom N, Wutikornwipak P, Kantukiti P, Nowwarote N et al (2016) Surface properties and early murine pre-osteoblastic cell responses of phosphoric acid modified titanium surface. J Oral Biol Craniofac Res 6(1):3–10

    Google Scholar 

  32. Rankin G, Stokes M (1998) Reliability of assessment tools in rehabilitation: an illustration of appropriate statistical analyses. Clin Rehabil 12(3):187–199

    CAS  PubMed  Google Scholar 

  33. Huang X, Brazel CS (2001) On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release 73(2):121–136

    CAS  PubMed  Google Scholar 

  34. Tan GYT, Zimmermann W, Lee K-H, Lan JC-W, Yim HS, Ng HS (2017) Recovery of mangostins from Garcinia mangostana peels with an aqueous micellar biphasic system. Food Bioprod Process 102:233–240

    CAS  Google Scholar 

  35. Chien A-C, Hill NS, Levin PA (2012) Cell size control in bacteria. Curr Biol 22(9):R340–R349

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Koh J-J, Qiu S, Zou H, Lakshminarayanan R, Li J, Zhou X et al (2013) Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. BBA-Biomembranes 1828(2):834–844

    CAS  PubMed  Google Scholar 

  37. Hendiani I, Hadidjah D, Susanto A, Mustika Sp I (2017) Inhibitory and bactericidal power of mangosteen rind extract towards Porphyromonas Gingivalis and Actinobacillus Actinomycetemcomitans (Laboratory test). Padjadjaran J Dent 28(2):75–80

    Google Scholar 

  38. Pan-In P, Wongsomboon A, Kokpol C, Chaichanawongsaroj N, Wanichwecharungruang S (2015) Depositing α-mangostin nanoparticles to sebaceous gland area for acne treatment. J Pharmacol Sci 129(4):226–232

    CAS  PubMed  Google Scholar 

  39. Takase K, Miura H, Tamon H, Okazaki M (1994) Structure formation of coated films with dispersed pigments during drying. Dry Technol 12(6):1279–1296

    CAS  Google Scholar 

  40. Peng C, Zhao Q, Gao C (2010) Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multilayers-coated CaCO3 microparticles. Colloids Surf A Physicochem Eng Asp 353(2):132–139

    CAS  Google Scholar 

  41. Zhai W, Lu H, Wu C, Chen L, Lin X, Naoki K, Guoping C, Jiang C (2013) Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater 9(8):8004–8014

    CAS  PubMed  Google Scholar 

  42. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414

    PubMed  PubMed Central  Google Scholar 

  43. Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29(9):464–472

    CAS  PubMed  Google Scholar 

  44. Dawson CR, Drake AF, Helliwell J, Hider RC (1978) The interaction of bee melittin with lipid bilayer membranes. BBA-Biomembranes 510(1):75–86

    CAS  PubMed  Google Scholar 

  45. Foerster S, Unemo M, Hathaway LJ, Low N, Althaus CL (2016) Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae. BMC Microbiol 16:216

    PubMed  PubMed Central  Google Scholar 

  46. Putri K, Darsono L, Mandalas H (2017) Anti-inflammatory properties of mangosteen peel extract on the mouse gingival inflammation healing process. Padjadjaran J Dent 29(3):190–195

    Google Scholar 

  47. Chairungsrilerd N, Furukawa K-I, Ohta T, Nozoe S, Ohizumi Y (1996) Pharmacological properties of α-mangostin, a novel histamine H1 receptor antagonist. Eur J Pharmacol 314(3):351–356

    CAS  PubMed  Google Scholar 

  48. Ibrahim MY, Hashim NM, Mariod AA, Mohan S, Abdulla MA, Abdelwahab SI et al (2016) α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties. Arab J Chem 9(3):317–329

    CAS  Google Scholar 

  49. Gregory CA, Grady Gunn W, Peister A, Prockop DJ (2004) An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. AnBio 329(1):77–84

    CAS  Google Scholar 

  50. Chang Y-L, Stanford Clark M, Keller John C (2000) Calcium and phosphate supplementation promotes bone cell mineralization: Implications for hydroxyapatite (HA)-enhanced bone formation. J Biomed Mater Res 52(2):270–278

    CAS  PubMed  Google Scholar 

  51. Qiu Z-Y, Noh I-S, Zhang S-M (2013) Silicate-doped hydroxyapatite and its promotive effect on bone mineralization. Front Mater Sci 7(1):40–50

    Google Scholar 

  52. Rungby J, Kassem M, Eriksen EF, Danscher G (1993) The von Kossa reaction for calcium deposits: silver lactate staining increases sensitivity and reduces background. Histochem J 25(6):446–451

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported in part by grant for International Research Integration: (1) the Research Pyramid, Ratchadaphiseksomphot Endowment Fund (GCURP_58_02_63_01) of Chulalongkorn University, (2) The Thailand Research Fund (PHD60I0060) (3) Thailand Science Research and Innovation (4) National Research Council of Thailand (5) the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), (6) PETROMAT: Center of Excellence on Petrochemical and Materials Technology, and (7) The Royal Government of Thailand Scholarship 2562. We thank Dr. Kasemsith Vorathepputipong, a specialist in orthopedic surgery, for helpful ideas, comments, and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitt Supaphol.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaiarwut, S., Niyompanich, J., Ekabutr, P. et al. Development and characterization of antibacterial hydroxyapatite coated with mangosteen extract for bone tissue engineering. Polym. Bull. 78, 3543–3559 (2021). https://doi.org/10.1007/s00289-020-03284-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03284-3

Keywords

Navigation