Skip to main content

Advertisement

Log in

Synthesis of graft copolymers of carboxymethyl cellulose and N,N-dimethylaminoethyl methacrylate and their study as Paclitaxel carriers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The double-sensitive graft copolymers of sodium salt of carboxymethyl cellulose (Na-CMC) and N,N-dimethylaminoethyl methacrylate (DMAEMA) with different content are successfully synthesized by radical polymerization applying a redox initiator. Aqueous solution of the synthesized copolymers has a lower critical solution temperature (LCST) in the range of 37–44 °C, and the sizes of copolymer particles being multichain spherical negative-charged aggregates are in a 118–133 nm range. Na-CMC-g-PDMAEMA copolymer particles are stable in a 0.15 N NaCl aqueous solution and in the physiological pH range, which allows to apply them as vectors for targeted drug delivery. Conjugation between Paclitaxel (Ptx) and Na-CMC-g-PDMAEMA copolymer is due to hydrophobic and electrostatic interaction between functional groups of each component; copolymers are characterized by relatively high values of loading and encapsulation efficiencies of Ptx. In vitro release kinetics was also researched in acidic and neutral media at 38 °C. The release process of Ptx from a copolymer conjugate is described by Korsmeyer–Peppas kinetic model and limited by molecular diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Edgar KJ, Buchanan CV, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688. https://doi.org/10.1016/S0079-6700(01)00027-2

    Article  CAS  Google Scholar 

  2. Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd Polym 209:130–144. https://doi.org/10.1016/j.carbpol.2019.01.020

    Article  CAS  Google Scholar 

  3. Franceschini G (2019) Internal surgical use of biodegradable carbohydrate polymers. Warning for a conscious and proper use of oxidized regenerated cellulose. Carbohyd Polym 216:213–216. https://doi.org/10.1016/j.carbpol.2019.04.036

    Article  CAS  Google Scholar 

  4. Gopi S, Balakrishnan P, Chandradhara D, Poovathankandy D, Thomas S (2019) General scenarios of cellulose and its use in the biomedical field. Mater Today Chem 13:59–78. https://doi.org/10.1016/j.mtchem.2019.04.012

    Article  CAS  Google Scholar 

  5. Gürdağ G, Sarmad S (2013) Cellulose graft copolymers: synthesis, properties, and applications. In: Kalia S, Sabaa M (eds) Polysaccharide based graft copolymers. Springer, Berlin, pp 15–57

    Chapter  Google Scholar 

  6. Kumar A, Sharma S, Afgan S, Kumar R, Keshari AK, Srivastava R (2018) Development of graft copolymer of carboxymethylcellulose and N-vinylcaprolactam towards strong antioxidant and antibacterial polymeric materials. Int J Biol Macromol 112:780–787. https://doi.org/10.1016/j.ijbiomac.2018.02.030

    Article  CAS  PubMed  Google Scholar 

  7. Agarwal D, MacNaughtan W, Foster TJ (2018) Interactions between microfibrillar cellulose and carboxymethyl cellulose in an aqueous suspension. Carbohyd Polym 185:112–119. https://doi.org/10.1016/j.carbpol.2017.12.086

    Article  CAS  Google Scholar 

  8. Srivastava A, Mandal P, Kumar P (2016) Solid state thermal degradation behavior of graft copolymers of carboxymethyl cellulose with vinyl monomers. Int J Biol Macromol 87:357–365. https://doi.org/10.1016/j.ijbiomac.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  9. Javanbakht S, Shaabani A (2019) Carboxymethyl cellulose-based oral delivery systems. Int J Biol Macromol 133:21–29. https://doi.org/10.1016/j.ijbiomac.2019.04.079

    Article  CAS  PubMed  Google Scholar 

  10. Fournier D, Hoogenboom R, Thijs HML, Paulus RM, Schubert US (2007) Tunable pH- and temperature-sensitive copolymer libraries by reversible addition—fragmentation chain transfer copolymerizations of methacrylates. Macromol 40:915–920. https://doi.org/10.1021/ma062199r

    Article  CAS  Google Scholar 

  11. Hu J, Zhang G, Ge Z, Liu S (2014) Stimuli-responsive tertiary amine methacrylate-based block copolymers: synthesis, supramolecular self-assembly and functional applications. Prog Polym Sci 39:1096–1143. https://doi.org/10.1016/j.progpolymsci.2013.10.006

    Article  CAS  Google Scholar 

  12. Li Y, Ju D (2017) Chapter 12—the application, neurotoxicity, and related mechanism of cationic polymers. In: Jiang X, Gao H (eds) Neurotoxicity of Nanomaterials and nanomedicine. Academic Press, Elsevier Inc, London, pp 85–329

    Google Scholar 

  13. Xu FJ, Neoh KG, Kang ET (2009) Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog Polym Sci 34:719–761. https://doi.org/10.1016/j.progpolymsci.2009.04.005

    Article  CAS  Google Scholar 

  14. Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, Serpooshan V, Jacob KI, Moshaverinia A, Mahmoudi M (2017) Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release 253:46–63. https://doi.org/10.1016/j.jconrel.2017.02.021

    Article  CAS  PubMed  Google Scholar 

  15. Makvandi P, Jamaledin R, Jabbari M, Nikfarjam N, Borzacchiello A (2018) Antibacterial quaternary ammonium compounds in dental materials: a systematic review. Dent Mater 34:851–867. https://doi.org/10.1016/j.dental.2018.03.014

    Article  CAS  PubMed  Google Scholar 

  16. Yang M, Wan Y, Jiang X et al (2019) Electro-acupuncture promotes accumulation of paclitaxel by altering tumor microvasculature and microenvironment in breast cancer of mice. Front Oncol 9:576–578. https://doi.org/10.3389/fonc.2019.00576

    Article  PubMed  PubMed Central  Google Scholar 

  17. Abriata JP, Turatti RC, Luiz MT et al (2019) Development, characterization and biological in vitro assays of paclitaxel-loaded PCL polymeric nanoparticles. Mater Sci Eng C 96:347–355. https://doi.org/10.1016/j.msec.2018.11.035

    Article  CAS  Google Scholar 

  18. Wu M, Wang Y, Wang Y et al (2017) Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer. Int J Nanomed 12:5313–5330. https://doi.org/10.2147/ijn.s136032

    Article  CAS  Google Scholar 

  19. Xie HJ, Zhao J, Zhuo-Ma D et al (2019) Inhibiting tumour metastasis by DQA modified paclitaxel plus ligustrazine micelles in treatment of non-small-cell lung cancer. Artif Cells Nanomed Biotechnol 47:3465–3477. https://doi.org/10.1080/21691401.2019.1653900

    Article  CAS  PubMed  Google Scholar 

  20. Wang C, Wang R, Zhou K et al (2016) JD enhances the anti-tumour effects of low-dose paclitaxel on gastric cancer MKN45 cells both in vitro and in vivo. Cancer Chemother Pharmacol 8:971–982. https://doi.org/10.1007/s00280-016-3149-9

    Article  CAS  Google Scholar 

  21. Upponi JR, Jerajani K, Nagesha DK et al (2018) Polymeric micelles: theranostic co-delivery system for poorly water-soluble drugs and contrast agents. Biomaterials 170:26–36. https://doi.org/10.1016/j.biomaterials.2018.03.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang H, Khan AR, Liu M et al (2020) Stimuli-responsive polymeric micelles for the delivery of paclitaxel. J Drug Deliv Sci Technol A 56:101523. https://doi.org/10.1016/j.jddst.2020.101523

    Article  CAS  Google Scholar 

  23. Lim EK, Chung BH, Chung SJ (2018) Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr Drug Targets 19:300–317. https://doi.org/10.2174/1389450117666160602202339

    Article  CAS  PubMed  Google Scholar 

  24. Homayun B, Lin X, Choi H-J (2019) Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 11:129–160. https://doi.org/10.3390/pharmaceutics11030129

    Article  CAS  PubMed Central  Google Scholar 

  25. Kuznetsov VA, Sorokin AV, Lavlinskaya Sinelnikov AA, Bykovskiy DV (2019) Graft copolymers of carboxymethyl cellulose with N-vinylimidazole: synthesis and application for drug delivery. Polym Bull 76:4929–4949. https://doi.org/10.1007/s00289-018-2635-0

    Article  CAS  Google Scholar 

  26. Bellamy LJ (1958) The infra-red spectra of complex molecules. Methuen & Co. Ltd/Wiley, London/New York

    Google Scholar 

  27. Gupta K, Sahoo S, Khandekar K (2002) Graft copolymerization of ethyl acrylate onto cellulose using ceric ammonium nitrate as initiator in aqueous medium. Biomacromol 3:1087–1094. https://doi.org/10.1021/bm020060s

    Article  CAS  Google Scholar 

  28. Bhattacharya A, Misra B (2004) Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29:767–814. https://doi.org/10.1016/j.progpolymsci.2004.05.002

    Article  CAS  Google Scholar 

  29. Bhattacharyya SN, Maldas D (1984) Graft copolymerization onto cellulosics. Prog Polym Sci 10:171–270. https://doi.org/10.1016/0079-6700(84)90002-9

    Article  CAS  Google Scholar 

  30. Atanase L, Desbrieres J, Riess G (2017) Micellization of synthetic and polysaccharides-based graft copolymers in aqueous media. Prog Polym Sci 73:32–60. https://doi.org/10.1016/j.progpolymsci.2017.06.001

    Article  CAS  Google Scholar 

  31. Moharana S, Mishra SB, Tripathy SS (1991) Chemical modification of Jute fibers. I. Permanganate-initiated graft copolymerization methylmethacrylate onto jute fibers. J Appl Polym Sci 40:345–357

    Article  Google Scholar 

  32. Dai H, Zhang Y, Ma L, Zhang H, Huang H (2019) Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/graphene oxide hydrogels. Carbohyd Polym 215:366–376. https://doi.org/10.1016/j.carbpol.2019.03.090

    Article  CAS  Google Scholar 

  33. Fang L, Wang N, Zhou M, Zhu B, Zhu L, John AE (2015) Poly(N,N-dimethylaminoethyl methacrylate) grafted poly(vinyl chloride)s synthesized via ATRP process and their membranes for dye separation. Chin J Polym Sci 33:1491–1502. https://doi.org/10.1007/s10118-015-1701-4

    Article  CAS  Google Scholar 

  34. Benchabane A, Bekkour K (2008) Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym Sci 286:1173–1180. https://doi.org/10.1007/s00396-008-1882-2

    Article  CAS  Google Scholar 

  35. Plamper FA, Ruppel M, Schmalz A, Borisov O, Ballauff M, Müller AHE (2007) Tuning the thermoresponsive properties of weak polyelectrolytes: aqueous solutions of star-shaped and linear poly(N,N-dimethylaminoethyl methacrylate). Macromol 40:8361–8366. https://doi.org/10.1021/ma071203b

    Article  CAS  Google Scholar 

  36. Plamper FA, Ballauff M, Müller AHE (2007) Tuning the thermoresponsiveness of weak polyelectrolytes by pH and light: lower and upper critical-solution temperature of poly(N,N-dimethylaminoethyl methacrylate). J Am Chem Soc 129:14538–14539. https://doi.org/10.1021/ja074720i

    Article  CAS  PubMed  Google Scholar 

  37. París R, Quijada-Garrido I (2010) Temperature- and pH-responsive behavior of poly(2-(2-methoxyethoxy)ethyl methacrylate-co-N,N-dimethylaminoethyl methacrylate) hydrogels. Eur Polym J 46:2156–2163. https://doi.org/10.1016/j.eurpolymj.2010.09.004

    Article  CAS  Google Scholar 

  38. Holthoff H, Borkovec M, Schurtenberger P (1997) Determination of light-scattering form factors of latex particle dimers with simultaneous static and dynamic light scattering in an aggregating suspension. Phys Rev E 56:6945–6953. https://doi.org/10.1103/PhysRevE.56.6945

    Article  CAS  Google Scholar 

  39. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670. https://doi.org/10.1016/j.addr.2006.09.020

    Article  CAS  PubMed  Google Scholar 

  40. Liechty W, Kryscio D, Slaughter B (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173. https://doi.org/10.1146/annurev-chembioeng-073009-100847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li J, Huang P, Chang L, Long X, Dong A, Liu J, Chu L, Hu F, Liu J, Deng L (2013) Tumor targeting and pH-responsive polyelectrolyte complex nanoparticles based on hyaluronic acid-paclitaxel conjugates and chitosan for oral delivery of paclitaxel. Macromol Res 21:1331–1337. https://doi.org/10.1007/s13233-013-1171-x

    Article  CAS  Google Scholar 

  42. Shatalov GV, Lavlinskaya MS, Pakhomova OA, Mokshina NY, Kuznetsov VA (2016) Copolymers of N-vinylcaprolactam with 1-vinyl- and 1-methacryloyl-3,5-dimethylpyrazole as sorbents of essential α-amino acids in liquid- and solid-phase extraction. Russ J Appl Chem 89:140–146. https://doi.org/10.1134/S1070427216010225

    Article  CAS  Google Scholar 

  43. Özbas Z, Ökahraman B, Öztürk AB (2018) Controlled release profile of 5-fluorouracil loaded P(AAM-co-NVP-co-DEAEMA) microgel prepared via free radical precipitation polymerization. Polym Bull 75:3053–3067. https://doi.org/10.1007/s00289-017-2202-0

    Article  CAS  Google Scholar 

  44. Korsmeyer RW, Gurny R, Doelker ER, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9

    Article  CAS  Google Scholar 

  45. Peppas N, Ritger P (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36. https://doi.org/10.1016/0168-3659(87)90034-4

    Article  Google Scholar 

  46. Xu J, Xu B, Shou D, Xia X, Hu Y (2015) Preparation and evaluation of vancomycin-loaded N-trimethyl chitosan nanoparticles. Polym 7:1850–1870. https://doi.org/10.3390/polym7091488

    Article  CAS  Google Scholar 

  47. Llabot JM, Manzo RH, Allemandi DA (2004) Drug release from carbomer: carbomer sodium salt matrices with potential use as mucoadhesive drug delivery system. Int J Pharm 276:59–66. https://doi.org/10.1016/j.ijpharm.2004.02.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FTIR, TEM, UV spectroscopy, zeta-potential data were obtained with the use of equipment of Centre of collective usage of scientific equipment of Voronezh State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Sorokin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, A.V., Kuznetsov, V.A. & Lavlinskaya, M.S. Synthesis of graft copolymers of carboxymethyl cellulose and N,N-dimethylaminoethyl methacrylate and their study as Paclitaxel carriers. Polym. Bull. 78, 2975–2992 (2021). https://doi.org/10.1007/s00289-020-03250-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03250-z

Keywords

Navigation