Skip to main content
Log in

Tuning of electronic properties of novel donor–acceptor polymers containing oligothiophenes with electron-withdrawing ester groups

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

To investigate the substituent effects introduced into oligothiophene units, a series of novel donor–acceptor conjugated polymers containing ester-substituted oligothiophenes were synthesized by the direct C–H arylation polycondensation of bis(ester-substituted thienyl)benzothiadiazole and dibromo-substituted oligothiophenes. The ultraviolet–visible absorption spectra of three polymers showed two absorption bands in the visible light wavelength region, ascribed to ππ* transition and the intramolecular charge transfer bands. The oxidation potentials of the polymers exhibited a negative shift with an increase in the chain length of the oligothiophene units. By comparing these polymers with alkyl-substituted analogues, it was found that the introduction of electron-withdrawing ester groups induced a negative shift in the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels and affected the LUMO rather than the HOMO energy levels. As a preliminary experiment, organic photovoltaic cells using these polymers were prepared, and their photoelectric conversion characteristics were investigated in relation to their chemical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371. https://doi.org/10.1039/b914956m

    Article  CAS  PubMed  Google Scholar 

  2. Bujak P, Kulszewicz-Bajer I, Zagorska M, Maurel V, Wielgus I, Pron A (2013) Polymers for electronics and spintronics. Chem Soc Rev 42:8895–8999. https://doi.org/10.1039/c3cs60257e

    Article  CAS  PubMed  Google Scholar 

  3. Marszalek T, Li M, Pisula W (2016) Design directed self-assembly of donor–acceptor polymers. Chem Commun 52:10938–10947. https://doi.org/10.1039/c6cc04523e

    Article  CAS  Google Scholar 

  4. van Mullekom HAM, Vekemans JAJM, Havinga EE, Meijer EW (2001) Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Mater Sci Eng R 32:1–40. https://doi.org/10.1016/S0927-796X(00)00029-2

    Article  Google Scholar 

  5. Beaujuge PM, Amb CM, Reynolds JR (2010) Spectral engineering in π-conjugated polymers with intramolecular donor–acceptor interactions. Acc Chem Res 43:1396–1407. https://doi.org/10.1021/ar100043u

    Article  CAS  PubMed  Google Scholar 

  6. Lv X, Li W, Ouyang M, Zhang Y, Wright DS, Zhang C (2017) Polymeric electrochromic materials with donor–acceptor structures. J Mater Chem C 5:12–28. https://doi.org/10.1039/c6tc04002k

    Article  CAS  Google Scholar 

  7. Fabian J (1992) Near-infrared absorbing dyes. Chem Rev 92:1197–1226. https://doi.org/10.1021/cr00014a003

    Article  CAS  Google Scholar 

  8. Pu KY, Liu B (2009) Optimizing the cationic conjugated polymer-sensitized fluorescent signal of dye labeled oligonucleotide for biosensor applications. Biosens Bioelectron 24:1067–1073. https://doi.org/10.1016/j.bios.2008.07.029

    Article  CAS  PubMed  Google Scholar 

  9. Lee K, Povlich LK, Kim J (2010) Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst 135:2179–2189. https://doi.org/10.1039/c0an00239a

    Article  CAS  PubMed  Google Scholar 

  10. Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114:10869–10939. https://doi.org/10.1021/cr400532z

    Article  CAS  PubMed  Google Scholar 

  11. Song X, Chen Q, Liu Z (2015) Recent advances in the development of organic photothermal nano-agents. Nano Res 8:340–354. https://doi.org/10.1007/s12274-014-0620-y

    Article  CAS  Google Scholar 

  12. Held M, Zakharko Y, Wang M, Jakubka F, Gannott F, Rumer JW, Ashraf RS, McCulloch I, Zaumseil J (2016) Photo- and electroluminescence of ambipolar, high-mobility, donor–acceptor polymers. Org Electron 32:220–227. https://doi.org/10.1016/j.orgel.2016.02.030

    Article  CAS  Google Scholar 

  13. Crossley DL, Urbano L, Neumann R, Bourke S, Jones J, Dailey LA, Green M, Humphries MJ, King SM, Turner ML, Ingleson MJ (2017) Post-polymerization C−H borylation of donor−acceptor materials gives highly efficient solid state near-infrared emitters for near-IR-OLEDs and effective biological imaging. ACS Appl Mater Int 9:28243–28249. https://doi.org/10.1021/acsami.7b08473

    Article  CAS  Google Scholar 

  14. Yeh YM, Huang CH, Peng SH, Chang CC, Hsu CS (2019) Synthesis of novel conjugated polymers based on benzo[1,2-d:4,5-d′]-bis([1,2,3]triazole) for applications in organic field-effect transistors. Polym Chem 10:1471–1479. https://doi.org/10.1039/c8py01526k

    Article  CAS  Google Scholar 

  15. Zhang ZG, Wang J (2012) Structures and properties of conjugated donor–acceptor copolymers for solar cell applications. J Mater Chem 22:4178–4187. https://doi.org/10.1039/c2jm14951f

    Article  CAS  Google Scholar 

  16. Liu C, Wang K, Gong X, Heeger AJ (2016) Low bandgap semiconducting polymers for polymeric photovoltaics. Chem Soc Rev 45:4825–4846. https://doi.org/10.1039/c5cs00650c

    Article  CAS  PubMed  Google Scholar 

  17. Benten H, Mori D, Ohkita H, Ito S (2016) Recent research progress of polymer donor/polymer acceptor blend solar cells. J Mater Chem A 4:5340–5365. https://doi.org/10.1039/c5ta10759h

    Article  CAS  Google Scholar 

  18. Bäuerle P (1992) End-capped oligothiophenes-new model compounds for polythiophenes. Adv Mater 4:102–107. https://doi.org/10.1002/adma.19920040209

    Article  Google Scholar 

  19. Bäuerle P (1998) Oligothiophenes. In: Müllen K, Wegner G (eds) Electronic materials: the oligomer approach. Wiley-VCH, Weinheim, pp 105–197. https://doi.org/10.1002/9783527603220.ch2

    Chapter  Google Scholar 

  20. McCullough RD (1998) The chemistry of conducting polythiophenes. Adv Mater 10:93–116. https://doi.org/10.1002/(SICI)1521-4095(199801)10:2%3c93:AID-ADMA93%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  21. Roncali J (1999) Electrogenerated functional conjugated polymers as advanced electrode materials. J Mater Chem 9:1875–1893. https://doi.org/10.1039/A902747E

    Article  CAS  Google Scholar 

  22. Fichou D (2000) Structural order in conjugated oligothiophenes and its implications on opto-electronic devices. J Mater Chem 10:571–588. https://doi.org/10.1039/A908312J

    Article  CAS  Google Scholar 

  23. Turbiez M, Frère P, Allain M, Videlot C, Ackermann J, Roncali J (2005) Design of organic semiconductors: tuning the electronic properties of π-conjugated oligothiophenes with the 3,4-ethylenedioxythiophene (EDOT) building block. Chem Eur J 11:3742–3752. https://doi.org/10.1002/chem.200401058

    Article  CAS  PubMed  Google Scholar 

  24. Imae I, Imabayashi S, Komaguchi K, Tan Z, Ooyama Y, Harima Y (2014) Synthesis and electrical properties of novel oligothiophenes partially containing 3,4-ethylenedioxythiophenes. RSC Adv 4:2501–2508. https://doi.org/10.1039/c3ra44129f

    Article  CAS  Google Scholar 

  25. Imae I, Sagawa H, Harima Y (2018) Fine-tuning of electronic properties in donor–acceptor conjugated polymers based on oligothiophenes. Jpn J Appl Phys 57:03EJ01. https://doi.org/10.7567/JJAP.57.03EJ01

    Article  Google Scholar 

  26. Imae I, Tada N, Harima Y (2019) Synthesis and properties of donor–acceptor-type polymers comprising alkoxy-substituted bithiophene units. J Photopolym Sci Technol 32:585–592. https://doi.org/10.2494/photopolymer.32.585

    Article  CAS  Google Scholar 

  27. Imae I, Kumano M, Harima Y (2019) Molecular properties of thiophene-based donor–acceptor–donor small molecules with well-defined structures. Sci Adv Mater 11:792–799. https://doi.org/10.1166/sam.2019.3507

    Article  CAS  Google Scholar 

  28. Kellogg RM, Schaap AP, Wynberg H (1969) Bromination, deuteration, and lithiation of the dithienyls. J Org Chem 34:343–346. https://doi.org/10.1021/jo01254a019

    Article  CAS  Google Scholar 

  29. Bäuerle P, Würthner F, Götz G, Effenberger F (1993) Selective synthesis of α-substituted oligothiophenes. Synthesis 1993:1099–1103. https://doi.org/10.1055/s-1993-26009

    Article  Google Scholar 

  30. Imae I, Nawa K, Ohsedo Y, Noma N, Shirota Y (1997) Synthesis of a novel family of electrochemically-doped vinyl polymers containing pendant oligothiophenes and their electrical and electrochromic properties. Macromolecules 30:380–386. https://doi.org/10.1021/ma961250w

    Article  CAS  Google Scholar 

  31. Wang Y, Michinobu T (2016) Benzothiadiazole and its π-extended, heteroannulated derivatives: useful acceptor building blocks for high-performance donor–acceptor polymers in organic electronics. J Mater Chem C 4:6200–6214. https://doi.org/10.1039/c6tc01860b

    Article  CAS  Google Scholar 

  32. Pati PB (2016) Benzazole (B, N, O, S, Se and Te) based D–A–D type oligomers: switch from electropolymerization to structural aspect. Org Electron 38:97–106. https://doi.org/10.1016/j.orgel.2016.07.035

    Article  CAS  Google Scholar 

  33. Tan SE, Sarjadi MS (2017) The recent development of carbazole-, benzothiadiazole-, and isoindigo-based copolymers for solar cells application: a review. Polym Sci Ser B Polym Chem 59:479–496. https://doi.org/10.1134/S1560090417050141

    Article  CAS  Google Scholar 

  34. Li M, An C, Pisula W, Müllen K (2018) Cyclopentadithiophene−benzothiadiazole donor−acceptor polymers as prototypical semiconductors for high-performance field-effect transistors. Acc Chem Res 51:1196–1205. https://doi.org/10.1021/acs.accounts.8b00025

    Article  CAS  PubMed  Google Scholar 

  35. Borghese A, Geldhof G, Antoine L (2006) Direct C–H arylation of 3-methoxythiophene catalyzed by Pd. Application to a more efficient synthesis of π-alkoxy-oligothiophene derivatives. Tetrahedron Lett 47:9249–9252. https://doi.org/10.1016/j.tetlet.2006.10.130

    Article  CAS  Google Scholar 

  36. Ishiyama T, Sato K, Nishio Y, Saiki T, Miyaura N (2005) Regioselective aromatic C–H silylation of five-membered heteroarenes with fluorodisilanes catalyzed by iridium(I) complexes. Chem Commun 41:5065–5067. https://doi.org/10.1039/b511171d

    Article  CAS  Google Scholar 

  37. Lim E, Lee S, Lee KK, Kang IN, Moon SJ, Kong HY, Katz HE (2012) Solution-processable oligothiophenes with solubilizing β-alkyl groups for organic photovoltaic cells. Sol Energy Mater Sol Cells 107:165–174. https://doi.org/10.1016/j.solmat.2012.07.005

    Article  CAS  Google Scholar 

  38. Shirota Y (2000) Organic materials for electronic and optoelectronic devices. J Mater Chem 10:1–25. https://doi.org/10.1039/A908130E

    Article  CAS  Google Scholar 

  39. Shirota Y (2005) Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J Mater Chem 15:75–93. https://doi.org/10.1039/B413819H

    Article  CAS  Google Scholar 

  40. Chen J, Liao Q, Wang G, Yan Z, Wang H, Wang Y, Zhang X, Tang Y, Facchetti A, Marks TJ, Guo X (2018) Enhancing polymer photovoltaic performance via optimized intramolecular ester-based noncovalent sulfur···oxygen interactions. Macromolecules 51:3874–3885. https://doi.org/10.1021/acs.macromol.8b00161

    Article  CAS  Google Scholar 

  41. Yue W, Zhao Y, Tian H, Song D, Xie Z, Yan D, Geng Y, Wang F (2009) Poly(oligothiophene-alt-benzothiadiazole)s: tuning the structures of oligothiophene units toward high-mobility “black” conjugated polymers. Macromolecules 42:6510–6518. https://doi.org/10.1021/ma900906t

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  43. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18:789–794. https://doi.org/10.1002/adma.200501717

    Article  CAS  Google Scholar 

  44. Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ (2008) Processing additives for improved efficiency from bulk heterojunction solar cells. J Am Chem Soc 130:3619–3623. https://doi.org/10.1021/ja710079w

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants from the Nakanishi Scholarship Foundation and the Murata Science Foundation (I. I.). The authors are also grateful to Dr. Tomoko Amimoto and Dr. Daisuke Kajiya, the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University for mass spectroscopy measurements, and Mr. Yoshiharu Iwai, Riken Keiki Co., Ltd., for the PESA measurement using AC–2. We would like to thank Editage (www.editage.jp) for the English language editing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Imae.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imae, I., Tada, N. & Harima, Y. Tuning of electronic properties of novel donor–acceptor polymers containing oligothiophenes with electron-withdrawing ester groups. Polym. Bull. 78, 2341–2355 (2021). https://doi.org/10.1007/s00289-020-03212-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03212-5

Navigation