Skip to main content
Log in

Adsorption of caffeic acid on chitosan powder

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Adsorption of caffeic acid (CA) on chitosan (CH) powder from aqueous solution has been investigated to obtain insoluble CA–CH complex powders having different amount of CA. The pseudo-second kinetic model and the Langmuir, Freundlich and Dubinin–Radushkevich adsorption models were used to describe the kinetic and equilibrium adsorption of CA on CH. With the increase of adsorption temperature, the rate of adsorption increased while the amount of adsorbed CA decreased. The Langmuir adsorption model predicted that adsorption of CA takes place on the ionized amino groups of CH. However, with the increase of adsorption temperature the ion-exchange between carboxylic groups of CA and amino groups of CH became moderately difficult. The thermodynamic characteristics of adsorption have been evaluated. CA–CH complex formation was confirmed by FT-IR spectroscopy. With increasing amount of adsorbed CA the CA–CH powder was becoming more hydrophobic. 2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) assay confirmed that CA retained the antioxidant activity when immobilized on chitosan power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaushik P, Andujar I, Vilanova S, Plazas M, Gramazio P, Herraiz FJ, Brar NS, Prohens J (2015) Breeding vegetables with increased content in bioactive phenolic acids. Molecules 20:18464–18481. https://doi.org/10.3390/molecules201018464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gulcin I (2012) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391. https://doi.org/10.1007/s00204-011-0774-2

    Article  CAS  PubMed  Google Scholar 

  3. Magnani C, Isaac VLB, Correa MA, Salgado HRN (2014) Caffeic acid: a review of its potential use for medications and cosmetics. Anal Methods 6:3203–3210. https://doi.org/10.1039/c3ay41807c

    Article  CAS  Google Scholar 

  4. El-Seedi HR, El-Said AMA, Khalifa SAM, Goransson U, Bohlin L, Borg-Karlson AK, Verpoorte R (2012) Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J Agric Food Chem 60:10877–10895. https://doi.org/10.1021/jf301807g

    Article  CAS  PubMed  Google Scholar 

  5. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001

    Article  CAS  Google Scholar 

  6. Luo Y, Wang Q (2013) Recent advances of chitosan and its derivatives for novel applications in food science. J Food Process Beverages 1:1–13

    Google Scholar 

  7. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367. https://doi.org/10.1016/j.ijbiomac.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  8. Wong YC, Szeto YS, Cheung WH, McKay G (2004) Adsorption of acid dyes on chitosan—equilibrium isotherm analysis. Process Biochem 39:695–704. https://doi.org/10.1016/S0032-9592(03)00152-3

    Article  CAS  Google Scholar 

  9. Shamov MV, Bratskaya SY, Avramenko VA (2002) Interaction of carboxylic acids with chitosan: effect of pK and hydrocarbon chain length. J Colloid Interface Sci 249:316–321. https://doi.org/10.1006/jcis.2002.8248

    Article  CAS  PubMed  Google Scholar 

  10. Nunes C, Maricato E, Cunha A, Nunes A, da Silva JAL, Coimbra MA (2013) Chitosan–caffeic acid–genipin films presenting enhanced antioxidant activity and stability in acidic media. Carbohydr Polym 91:236–243. https://doi.org/10.1016/j.carbpol.2012.08.033

    Article  CAS  PubMed  Google Scholar 

  11. Nallamuthu I, Devi A, Khanum F (2015) Chlorogenic acid loaded chitosan nanoparticles with sustained release properties, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci 10:203–211. https://doi.org/10.1016/j.ajps.2014.09.005

    Article  Google Scholar 

  12. Silva SB, Amorim M, Fonte P, Madureira R, Ferreira D, Pintado M, Sarmento B (2015) Natural extracts into chitosan nanocarriers for rosmarinic acid drug. Pharm Biol 53:642–652. https://doi.org/10.3109/13880209.2014.935949

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Pu H, Chen C, Liu Y, Bai R, Kan J, Jin C (2018) Reaction mechanism and structural and physicochemical properties of caffeic acid grafted chitosan synthesized in ascorbic acid and hydroxyl peroxide redox system. J Agric Food Chem 66:279–289. https://doi.org/10.1021/acs.jafc.7b05135

    Article  CAS  PubMed  Google Scholar 

  14. Mahmoodi NM, Salehi R, Arami M, Bahrami H (2011) Dye removal from colored textile wastewater using chitosan in binary systems. Desalination 267:64–72. https://doi.org/10.1016/j.desal.2010.09.007

    Article  CAS  Google Scholar 

  15. Sakkayawong N, Thiravetyan P, Nakbanpote W (2005) Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J Colloid Interface Sci 286:36–42. https://doi.org/10.1016/j.jcis.2005.01.020

    Article  CAS  PubMed  Google Scholar 

  16. Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34(3):735–742. https://doi.org/10.1016/S0043-1354(99)00232-8

    Article  CAS  Google Scholar 

  17. Langmuir I (1918) Adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:212–223. https://doi.org/10.1021/ja02242a004

    Article  Google Scholar 

  18. Freundlich HMF (1906) Über die Adsorption in Lösungen. Z Phys Chem 57:385–470. https://doi.org/10.1515/zpch-1907-5723

    Article  CAS  Google Scholar 

  19. Dubinin MM (1991) Modern theory of volumetric filling of micropores of carbon adsorbent. Izv Akad Nauk SSSR Chim 1:9–30

    Google Scholar 

  20. Re R, Pellegrini N, Protoggente A, Pannala M, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26:1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  21. Kabir F, Katayama S, Tanji N, Nakamura S (2014) Antimicrobial effects of chlorogenic acid and related compounds. J Korean Soc Appl Biol Chem 57:359–365

    Article  CAS  Google Scholar 

  22. Helfferich F (1962) Ion exchange. McGraw Hill, New York, p 166

    Google Scholar 

  23. Hamdaoui O, Naffrechoux E (2007) Modelling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater 147:381–394. https://doi.org/10.1016/j.jhazmat.2007.01.021

    Article  CAS  PubMed  Google Scholar 

  24. Khan AA, Singh RP (1987) Adsorption thermodynamic of carbofuran on Sn(IV) arsenosilicate in H+, Na+ and Cd+ forms. Colloids Surf 24:33–42. https://doi.org/10.1016/0166-6622(87)80259-7

    Article  CAS  Google Scholar 

  25. Li P, Dai YN, Zhang JP, Wang AQ, Wei Q (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 4:221–228

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosca C, Novac O, Lisa G, Popa MI (2011) Polyelectrolyte complexes of chitosan with dextran sulphate. Synthesis and characterisation. Cell Chem Technol 45:185–189

    CAS  Google Scholar 

  27. Corazzari I, Nistico R, Turci F, Faga MG, Franzoso F, Tabasso S, Magnacca G (2015) Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FT-IR and GCMS: thermal degradation and water adsorption capacity. Polym Degrad Stab 112:1–9. https://doi.org/10.1016/j.polymdegradstab.2014.12.006

    Article  CAS  Google Scholar 

  28. de Queiroz Antonino RSCM, Lia Fook BRP, de Oliveira Lima VA, de Farias Rached RÍ, Lima EPN, da Silva Lima RJ, Peniche Covas CA, Lia Fook MV (2017) Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs 15(5):141. https://doi.org/10.3390/md15050141

    Article  CAS  PubMed Central  Google Scholar 

  29. Maroappan G, Sundaraganesan N, Manoharan S (2012) Experimental and theoretical spectroscopy studies of anticancer drug rosmarinic acid using HF and density functional theory. Spectrochim Acta A Mol Biomol Spectrosc 97:340–351. https://doi.org/10.1016/j.saa.2012.06.011

    Article  CAS  Google Scholar 

  30. Xing Y, Peng H, Zhang M, Li X, Zeng W, Yang X (2012) Caffeic acid product from the highly copper-tolerant plant Elsholtzia splendens post-phytoremediation: its extraction, purification, and identification. J Zhejiang Univ Sci B 13:487–493. https://doi.org/10.1631/jzus.B1100298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ŝwisłocka R (2013) Spectroscopic (FT-IR, FT-Raman, UV absorption, 1H and 13C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metals salts of caffeic acid. Spectrochim Acta A Mol Biomol Spectrosc 100:21–30. https://doi.org/10.1016/j.saa.2012.01.048

    Article  CAS  PubMed  Google Scholar 

  32. Dragan ES, Schwarz S (2004) Polyelectrolyte complexes. VI. Polycation structure, polyanion molar mass and polyion concentration effects on complex nanoparticles based on poly(sodium 2-acrylamido-2-methylpropanesulfonate). J Polym Sci A Polym Chem 42:2495–2505. https://doi.org/10.1002/pola.20110

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Research Council of Lithuania for the Lithuanian-French programme “Gilibert” Project No. S-LZ-19-6 is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dovile Liudvinaviciute.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liudvinaviciute, D., Rutkaite, R., Bendoraitiene, J. et al. Adsorption of caffeic acid on chitosan powder. Polym. Bull. 78, 2139–2154 (2021). https://doi.org/10.1007/s00289-020-03205-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03205-4

Keywords

Navigation