Skip to main content

Advertisement

Log in

Mesoporous silica MCM-41-reinforced cardanol-based benzoxazine nanocomposites for low-k applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The two different benzoxazine (Bz) monomers were synthesized from two different bisphenol-AF (BF)- and bisphenol-S (BS)-based diamines with cardanol (CL) precursor, whose molecular structures were confirmed using spectroscopy tools. Further, 2.5 wt%, 5 wt% and 7.5 wt% of phenol-3-aminopropyltriethoxysilane benzoxazine-functionalized MCM-41 (APMS) were reinforced with cardanol-bisphenol AF core diamine-based benzoxazine (BFCL-Bz) and cardanol-bisphenol-S core diamine-based benzoxazine (BSCL-Bz) and cured, which leads to increased thermal stability. Successfully developed polybenzoxazines (PBz) nanocomposites dielectric properties were studied. It was observed that the incorporation of 7.5 wt% of APMS into BFCL-PBz polybenzoxazine results an ultra-low dielectric constant value of about 1.78 at 1 MHz, whereas the APMS/BSCL-PBz composites showed 2.16 for the same weight % concentration of APMS. This may be attributed to the presence of fluorine moieties in APMS/BFCL-PBz system. Data resulted from different studies, and it is concluded that the hybrid composites developed in the present work can conveniently be used in the form of adhesives, sealants and encapsulants for low k interlayer dielectric materials for high-performance microelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Carter KR, DiPietro RA, Sanchez MI, Swanson SA (2001) Nanoporous polyimides derived from highly fluorinated polyimide/poly(propylene oxide) copolymers. Chem Mater 13:213

    Article  CAS  Google Scholar 

  2. Treichel H, Ruhl G, Ansmann P, Wurl R, Muller CH, Dietlmeier H (1998) Low dielectric constant materials for interlayer dielectric. Microelectron Eng 40:1

    Article  CAS  Google Scholar 

  3. Fu GD, Yuan Z, Kang ET, Neoh KG, Lai DM, Huan ACH (2005) Nanoporous ultra-low-dielectric-constant fluoropolymer films via selective UV decomposition of poly(pentafluorostyrene)-block-poly(methyl methacrylate) copolymers prepared using atom transfer radical polymerization. Adv Funct Mater 15:315

    Article  CAS  Google Scholar 

  4. Karikal Chozhan C, Chandramohan A, Alagar M (2015) Influence of multiwalled carbon nanotubes on mechanical, thermal and electrical behavior of polybenzoxazine-epoxy nanocomposites. Polym Plast Technol Eng 54:68

    Article  CAS  Google Scholar 

  5. Chandramohan A, Karikal Chozhan C, Alagar M (2013) Polysilsesquioxane-reinforced phosphorous containing bis(4-maleimidophenyl)benzoxazine hybrid nanocomposites. High Perform Polym 25:744

    Article  CAS  Google Scholar 

  6. Sasikumar R, Ariraman M, Alagar M (2015) Synthesis on MCM-41/PDMS based hybrid polybenzoxazine nanocomposites for interlayer low-k dielectrics. RSC Adv 5:40798

    Article  CAS  Google Scholar 

  7. Selvaraj V, Jayanthi KP, Lakshmikandhan D, Alagar M (2015) Development of polybenzoxazine/TSB15 composite from renewable resource cardanol for low-k applications. RSC Adv 5:48898

    Article  CAS  Google Scholar 

  8. Nagendiran S, Dinakaran K, Chandramohan A, Alagar M (2019) Octahedral oligomeric silsesquioxane (OAPS and OG)—polyimide hybrid nanocomposite films: thermo-mechanical, dielectric and morphology properties. J Macromol Sci Part A Pure Appl Chem 56:1082

    Article  CAS  Google Scholar 

  9. Lakshmikandhan T, Hariharan A, Sethuraman K, Alagar M (2019) Development of functionalized SiO2–TiO2 reinforced cardanol and caprolactam modified diamine based polybenzoxazine nanocomposites for high performance applications. J Coat Technol Res 16:1731

    Article  CAS  Google Scholar 

  10. Cao Z, Ji L, Liu Y, Jian Z, Zhang D (2013) Crosslinkable fluorinated hyperbranched polyimide for thermo-optic switches with high thermal stability. J Appl Polym Sci 127:607

    Article  CAS  Google Scholar 

  11. Phiriyawirut P, Magaraphan R (2001) Ishida H (2001) Preparation and characterization of polybenzoxazine-clay immiscible nanocomposites. Mater Res Innov 4:187

    Article  CAS  Google Scholar 

  12. Kurinchyselvan S, Sasikumar R, Ariraman M, Gomathipriya P, Alagar M (2016) Low dielectric behavior of amine functionalized MCM-41 reinforced polyimide nanocomposites. High Perform Polym 28(7):842

    Article  CAS  Google Scholar 

  13. Velez-Herrera P, Doyama K, Abe H, Ishida H (2008) Synthesis and characterization of highly fluorinated polymer with the benzoxazine moiety in the main chain. Macromolecules 41:9704

    Article  CAS  Google Scholar 

  14. Kiskan B, Nath Ghosh N, Yagci Y (2011) Polybenzoxazine-based composites as high-performance materials. Polym Int 60:167

    Article  CAS  Google Scholar 

  15. Arumugam H, Krishnan S, Chavali M, Muthukaruppan A (2018) Cardanol based benzoxazine blends and bio-silica reinforced composites: thermal and dielectric properties. New J Chem 42:4067

    Article  CAS  Google Scholar 

  16. Xu GM, Shi T, Liu J, Wang Q (2014) Preparation of a liquid benzoxazine based on cardanol and the thermal stability of its graphene oxide composites. J Appl Polym Sci 131:40353

    Article  CAS  Google Scholar 

  17. Rao BS, Palanisamy A (2013) A Synthesis of bio based low temperature curable liquid epoxy, benzoxazine monomer system from cardanol: thermal and viscoelastic properties. Eur Polym J 49:2365–2376

    Article  CAS  Google Scholar 

  18. Chandramohan A, Devaraju S, Vengatesan MR, Alagar M (2012) Octakis(dimethylsiloxypropylglycidylether)silsesquioxane (OG-POSS) reinforced 1,1-bis(3-methyl-4-hydroxymethyl) cyclohexane based polybenzoxazine nanocomposites. J Polym Res 19:9903

    Article  CAS  Google Scholar 

  19. Su YC, Chen WC, Ou KL, Chang FC (2005) Study of the morphologies and dielectric constants of nanoporous materials derived from benzoxazine-terminated poly(ε-caprolactone)/polybenzoxazine co-polymers. Polymer 46:3758

    Article  CAS  Google Scholar 

  20. Baskaran S, Liu J, Domansky K, Kohler N, Li XH, Coyle C, Fryxell GE, Thevuthasan S, Williford RE (2000) Low dielectric constant mesoporous silica films through molecularly templated synthesis. Adv Mater 12:291

    Article  CAS  Google Scholar 

  21. Yang CM, Cho AT, Pan FM, Tsai TG, Chao KJ (2001) Spin-on mesoporous silica films with ultralow dielectric constants, ordered pore structures, and hydrophobic surfaces. Adv Mater 13:1099

    Article  CAS  Google Scholar 

  22. Ariraman M, Sasi Kumar R, Alagar M (2014) Studies on FMCM-14 reinforced cyanate ester nanocomposites for low-k applications. RSC Adv 4:57759

    Article  CAS  Google Scholar 

  23. Liu Z, Sakamoto Y, Ohsuna T, Hiraga K, Terasaki O, Ko CH, Shin HJ, Ryoo R (2000) TEM studies of platinum nanowires fabricated in mesoporous silica MCM-41. Angew Chem 39:3107

    Article  CAS  Google Scholar 

  24. Kalilur Rahiman A, Shanmuga Bharathi K, Sreedaran S, Rajesh K, Narayanan V (2009) Cationic vanadyl porphyrin-encapsulated mesoporous Al/V-MCM-41 as heterogeneous catalysts for the oxidation of alkenes. Inorg Chim Acta 362:1810

    Article  CAS  Google Scholar 

  25. Lei T, Xue Q, Chu L, Han Z, Sun J, Xia F, Zhang Z, Guo Q (2013) Excellent dielectric properties of polymer composites based on core–shell structured carbon/silica nanohybrid. Appl Phys Lett 103:012902

    Article  CAS  Google Scholar 

  26. Govindaraj B, Sundararajan P, Sarojadevi M (2012) Synthesis and characterization of polyimide/polyhedral oligomeric silsesquioxane nanocomposites containing quinolyl moiety. Polym Int 61:1344

    Article  CAS  Google Scholar 

  27. Hariharan R, Sarojadevi M (2007) Synthesis and characterization of organo-soluble fluorinated polyimides. Polym Int 56:22

    Article  CAS  Google Scholar 

  28. Agag T, Takeichi T (2006) High performance polybenzoxazines as novel thermosets. High Perform Polym 18:777

    Article  CAS  Google Scholar 

  29. Lochab BI, Varma K, Bijwe J (2012) Blends of benzoxazine monomers. J Therm Anal Calorim 107:661

    Article  CAS  Google Scholar 

  30. Lee T, Park SS, Jung Y, Han Y, Han D, Kim I, Ha CS (2009) Preparation and characterization of polyimide/mesoporous silica hybrid nanocomposites based on water-soluble poly (amic acid) ammonium salt. Eur Polym J 45:19

    Article  CAS  Google Scholar 

  31. Sethuraman K, Alagar M (2015) Thermo-mechanical and dielectric properties of graphene reinforced caprolactam cardanol based benzoxazine-epoxy nanocomposites’. RSC Adv 5:9607

    Article  CAS  Google Scholar 

  32. Wang J, Fang X, Wu MQ, He XY, Liu WB, Shen XD (2011) Synthesis, curing kinetics and thermal properties of bisphenol-AP-based benzoxazine. Eur Polym J 47:2158

    Article  CAS  Google Scholar 

  33. Zhuang Q, Mao X, Xie Z, Liu X, Wang Q, Chen Y, Han Z (2012) Synthesis of multiwalled carbon nanotube/fluorine-containing poly (phenylene benzoxazole) composites exhibiting greatly enhanced dielectric constants. J Polym Sci Part A Polym Chem 50:4732

    Article  CAS  Google Scholar 

  34. Wang J, Wu M, Liu W, Yang S, Bai J, Ding Q, Li Y (2010) Synthesis, curing behavior and thermal properties of fluorene containing benzoxazines. Eur Polym J 46:1024

    Article  CAS  Google Scholar 

  35. Lin JJ, Wang XD (2007) Novel low-ț polyimide/mesoporous silica composite films: preparation, microstructure, and properties. Polymer 48:318

    Article  CAS  Google Scholar 

  36. Wang J, Ren TT, Wang YD, He X, Liu W, Shen X (2014) Synthesis, curing behavior and thermal properties of fluorene-containing benzoxazines based on linear and branched butylamines. React Funct Polym 74:22

    Article  CAS  Google Scholar 

  37. Hemvichian K, Ishida H (2002) Thermal decomposition processes in aromatic amine-based polybenzoxazines investigated by TGA and GC–MS. Polymer 43:4391

    Article  CAS  Google Scholar 

  38. Van Krevelen DW (1975) Some basic aspects of flame resistance of polymeric materials. Polymer 16:615

    Article  Google Scholar 

  39. Karikal Chozhan C, Chandramohan A, Alagar M (2013) Studies on thermal, mechanical, electrical, and morphological behavior of organoclay-reinforced polybenzoxazine–epoxy nanocomposites. High Perform Polym 25:1007

    Article  CAS  Google Scholar 

  40. Kuo SW, Wu YC, Wang CF, Jeong KU (2009) Preparing low-surface-energy polymer materials by minimizing intermolecular hydrogen bonding interactions. J Phys Chem C 113:20666

    Article  CAS  Google Scholar 

  41. Chakrabarty S, Zhang X, Bharti P, Chujo Y, Miyake J, Wynne KJ, Yadavalli VK (2010) Processing dependence of surface morphology in condensation cured PDMS nanocomposites. Polymer 51:5756

    Article  CAS  Google Scholar 

  42. Tseng MC, Liu Y (2010) Preparation, morphology, and ultra-low dielectric constants of benzoxazine-based polymers/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer 51:5567

    Article  CAS  Google Scholar 

  43. Hougham G, Tesero G, Shaw J (1994) Synthesis and properties of highly fluorinated polyimides. Macromolecules 27:3642

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukaruppan Alagar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurinchyselvan, S., Chandramohan, A., Hariharan, A. et al. Mesoporous silica MCM-41-reinforced cardanol-based benzoxazine nanocomposites for low-k applications. Polym. Bull. 78, 2043–2065 (2021). https://doi.org/10.1007/s00289-020-03198-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03198-0

Keywords

Navigation