Skip to main content
Log in

High permittivity ceramics-filled acrylonitrile butadiene rubber composites: influence of acrylonitrile content and ceramic type

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Influence of acrylonitrile content and ceramic type on cure characteristics, mechanical, morphological, and dielectric properties of acrylonitrile butadiene rubber (NBR) vulcanizates was examined. Two types of ceramic filler, namely barium titanate (BT) and calcium copper titanate (CCTO), were synthesized by solid-state reactions. The ceramic powders were then characterized by X-ray diffraction, particle size analyzer, and scanning electron microscopy (SEM). Ceramic/rubber composites were then mixed in an internal mixer at 60 °C and a rotor speed of 60 rpm. Two acrylonitrile contents of NBR, namely 33 wt% and 42 wt%, were tested. Incorporation of ceramic fillers in NBR matrix and increasing acrylonitrile content shortened scorch and cure times, but increased minimum, maximum, and delta torque. Furthermore, SEM results revealed that the BT-filled NBR composites showed better filler–matrix interactions than the CCTO-filled NBR composites. This matches the better mechanical and dielectric properties of the BT-filled NBR composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Caprarescu S, Radu AL, Purcar V, Sarbu A, Vaireanu DI, Ianchis R, Ghiurea M (2014) Removal of copper ions from simulated wastewaters using different bicomponent polymer membranes. Water Air Soil Pollut 225:2079 (1–12)

    Article  CAS  Google Scholar 

  2. Simona C, Raluca I, Laura RA, Andrei S, Raluca S, Bogdan T, Elvira A, Ilie SC, Claudiu FR, Daniela IE, Silviu P, Ionut AL, Dan D (2017) Synthesis, characterization and efficiency of new organically modified montmorillonite polyethersulfone membranes for removal of zinc ions from wastewasters. Appl Clay Sci 137:135–142

    Article  CAS  Google Scholar 

  3. Caprarescu S, Ion-Ebrasu D, Soare A, Purcar V, Radu AL, Sarbu A, Pascu M, Modrogan C, Dancila AM, Deleanu C (2019) Removal of nickel ions from synthetic wastewater using copolymers/natural extract blend membranes. Rom J Phys 64(821):1–10

    Google Scholar 

  4. Ion-Ebrasu D, Pollet BG, Spinu-Zaulet A, Soare A, Carcadea E, Varlam M, Caprarescu S (2019) Graphene modified fluorinated cation-exchange membranes for proton exchange membrane water electrolysis. Int Hydrog Energy 44:10190–10196

    Article  CAS  Google Scholar 

  5. Atanase LI, Riess G (2013) Micellization of pH-stimulable poly(2-vinylpyridine)-b-poly(ethylene oxide) copolymers and their complexation with anionic surfactants. J Colloid Interface Sci 395:190–197

    Article  CAS  PubMed  Google Scholar 

  6. Gopinath S, Adarsh NN, Nair PR, Mathew S (2020) One-way thermo-responsive shape memory polymer nanocomposite derived from polycaprolactone and polystyrene-block-polybutadiene-block-polystyrene packed with carbon nanofiber. Mater Today Commun 22:1008022 (1–8)

    Google Scholar 

  7. Cui X, Chen J, Zhu Y, Jiang W (2020) Natural sunlight-actuated shape memory materials with reversible shape change and self-healing abilities based on carbon nanotubes filled conductive polymer composites. Chem Eng J 382:122823 (1–11)

    Article  CAS  Google Scholar 

  8. Liu C, Li J, Jin Z, Hou P, Zhao H, Wang L (2019) Synthesis of graphene-epoxy nanocomposites with the capability to self-heal underwater for materials protection. Compos Commun 15:155–161

    Article  Google Scholar 

  9. Chameswary J, Sebastian M (2015) Preparation and properties of BaTiO3 filled butyl rubber composites for flexible electronic circuit applications. J Mater Sci Mater 26(7):4629–4637

    Article  CAS  Google Scholar 

  10. Namitha L, Sebastian M (2017) High permittivity ceramics loaded silicone elastomer composites for flexible electronics applications. Ceram Int 43(3):2994–3003

    Article  CAS  Google Scholar 

  11. Gu L, Li T, Xu Y, Sun C, Yang Z, Zhu D, Chen D (2019) Effects of the particle size of BaTiO3 fillers on fabrication and dielectric properties of BaTiO3/polymer/Al films for capacitor energy-storage application. Materials 12(3):439 (1–16)

    Article  CAS  PubMed Central  Google Scholar 

  12. Zhu S, Guo J, Zhang J (2018) Enhancement of mechanical strength associated with interfacial tension between barium titanate and acrylonitrile–butadiene rubber with different acrylonitrile contents by surface modification. J Appl Polym Sci 135(9):45936 (1–10)

    Article  CAS  Google Scholar 

  13. Ahmad H, Ismail H, Azura A (2015) Comparison properties of natural rubber/virgin acrylonitrile–butadiene rubber and natural rubber/recycled acrylonitrile–butadiene rubber blends. Iran Polym J 24:185–195

    Article  CAS  Google Scholar 

  14. Whelan A, Lee K (2013) Developments in rubber technology—2: synthetic rubbers. In: Bertram HH (ed) Developments in acrylonitrile-butadiene rubber (NBR) and future prospects. Applied Science Publishers LTD, Essex, pp 51–52

    Google Scholar 

  15. El-Nemr KF (2011) Effect of different curing systems on the mechanical and physico-chemical properties of acrylonitrile butadiene rubber vulcanizates. Mater Des 32:3361–3369

    Article  CAS  Google Scholar 

  16. Bokobza L (2018) Natural rubber nanocomposites: a review. Nanomaterials 9(1):12 (1–21)

    Article  PubMed Central  CAS  Google Scholar 

  17. Morsy R, Ismaiel M, Yehia A (2013) Conductivity studies on acrylonitrile butadiene rubber loaded with different types of carbon blacks. Int J Mater Methods Technol 1:22–35

    Google Scholar 

  18. Balachandran M, Bhagawan S (2012) Mechanical, thermal and transport properties of nitrile rubber (NBR)—nanoclay composites. J Polym Res 19:9809 (1–10)

    Article  CAS  Google Scholar 

  19. Amin LMN, Ismail H, Nadras O (2018) Comparative study of bentonite filled acrylonitrile butadiene rubber and carbon black filled NBR composites properties. Int J Auto Mech Eng 15:5468–5479

    Article  CAS  Google Scholar 

  20. Sadek E, El-Nashar D, Ahmed S (2018) Influence of modifying agents of organoclay on the properties of nanocomposites based on acrylonitrile butadiene rubber. Egypt J Pet 27:1177–1185

    Article  Google Scholar 

  21. Kapgate BP, Das C, Basu D, Das A, Heinrich G (2015) Rubber composites based on silane-treated Stöber silica and nitrile rubber: interaction of treated silica with rubber matrix. J Elastom Plast 47:248–261

    Article  CAS  Google Scholar 

  22. Eyssa H, Abulyazied D, Abdulrahman M, Youssef H (2018) Mechanical and physical properties of nanosilica/nitrile butadiene rubber composites cured by gamma irradiation. Egypt J Pet 27:383–392

    Article  Google Scholar 

  23. Chaichan MT, Jawad RS, Hussein RM (2017) The influence of graphene oxide addition on the fortified nitrile butadiene rubber nano-composite qualities. Al-Nahrain J Eng Sci 20:904–910

    Google Scholar 

  24. Dief Allah M, Ali Z, Rozik NN, Raslan M, Sadek KU (2017) Electrical and mechanical properties of Nitrile rubber (NR) filled with industrial waste and by product from manufacture of ferrosilicon alloys in Egyptian chemical industries company. Egypt J Chem 60:905–918

    Article  Google Scholar 

  25. Valentini L, Bon SB, Hernández M, López-Manchado MA, Pugno N (2018) Nitrile butadiene rubber composites reinforced with reduced graphene oxide and carbon nanotubes show superior mechanical, electrical and icephobic properties. Compos Sci Technol 166:109–114

    Article  CAS  Google Scholar 

  26. Pingot M, Szadkowski B, Zaborski M (2018) Effect of carbon nanofibers on mechanical and electrical behaviors of acrylonitrile-butadiene rubber composites. Polym Adv Technol 29:1661–1669

    Article  CAS  Google Scholar 

  27. Su J, Zhang J (2016) Reinforced properties of ethylene–propylene–diene monomer composites by vinyltrimethoxysiloxane functionalised barium titanate. Plast Rubber Compos 45:127–135

    Article  CAS  Google Scholar 

  28. Šupová M, Martynková GS, Barabaszová K (2011) Effect of nanofillers dispersion in polymer matrices: a review. Sci Adv Mater 3:1–25

    Article  CAS  Google Scholar 

  29. Luo B, Wang X, Zhao Q, Li L (2015) Synthesis, characterization and dielectric properties of surface functionalized ferroelectric ceramic/epoxy resin composites with high dielectric permittivity. Compos Sci Technol 112:1–7

    Article  CAS  Google Scholar 

  30. Li L, Zheng S (2016) Enhancement of dielectric constants of epoxy thermosets via a fine dispersion of barium titanate nanoparticles. J Appl Polym Sci 133:43322 (1–10)

    Google Scholar 

  31. Gonzalez N, Tomara GN, Psarras GC, Riba JR, Armelin E (2017) Dielectric response of vulcanized natural rubber containing BaTiO3 filler: the role of particle functionalization. Eur Polym J 97:57–67

    Article  CAS  Google Scholar 

  32. Guan S, Li H, Zhao S, Guo L (2018) The surface modification of BaTiO3 and its effects on the microstructure and electrical properties of BaTiO3/silicone rubber composites. J Vinyl Addit Technol 24:288–294

    Article  CAS  Google Scholar 

  33. Zhang X, Wang Y, Sheng Y, Ye H, Xu L, Wu H (2019) Enhanced energy density in hydroxyl-modified barium titanate/poly (fluorovinylidene-co-trifluoroethylene) nanocomposites with improved interfacial polarization. Chem Phys Lett 723:89–95

    Article  CAS  Google Scholar 

  34. Hamciuc E, Hamciuc C, Bacosca I, Cristea M, Okrasa L (2011) Thermal and electrical properties of nitrile-containing polyimide/BaTiO3 composite films. Polym Compos 32:846–855

    Article  CAS  Google Scholar 

  35. Phan TTM, Chu NC, Luu VB, Xuan HN, Pham DT, Martin I, Carrière P (2016) Enhancement of polarization property of silane-modified BaTiO3 nanoparticles and its effect in increasing dielectric property of epoxy/BaTiO3 nanocomposites. J Sci Adv Mater Dev 1:90–97

    Google Scholar 

  36. Zhu S, Zhang J (2017) Enhanced dielectric constant of acrylonitrile–butadiene rubber/barium titanate composites with mechanical reinforcement by nanosilica. Iran Polym J 26:239–325

    Article  CAS  Google Scholar 

  37. Saidina D, Mariatti M, Julie M (2014) Properties of calcium copper titanate and barium titanate filled epoxy composites for electronic applications: effect of filler loading and hybrid fillers. J Mater Sci Mater Electron 25:4923–4932

    Article  CAS  Google Scholar 

  38. Dang ZM, Zhou T, Yao SH, Yuan JK, Zha JW, Song HT, Li JY, Chen Q, Yang WT, Bai J (2009) Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater 21:2077–2082

    Article  CAS  Google Scholar 

  39. Yang W, Yu S, Sun R, Du R (2011) Nano-and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites. Acta Mater 59:5593–5602

    Article  CAS  Google Scholar 

  40. Chi Q, Sun J, Zhang C, Liu G, Lin J, Wang Y, Wang X, Lei Q (2014) Enhanced dielectric performance of amorphous calcium copper titanate/polyimide hybrid film. J Mater Chem C 2:172–177

    Article  CAS  Google Scholar 

  41. Romasanta LJ, Leret P, Casaban L, Hernández M, Miguel A, Fernández JF, Kenny JM, Lopez-Manchado MA, Verdejo R (2012) Towards materials with enhanced electro-mechanical response: CaCu3Ti4O12–polydimethylsiloxane composites. J Mater Chem 22:24705–24712

    Article  CAS  Google Scholar 

  42. Wang GL, Zhang YY, Duan L, Ding KH, Wang ZF, Zhang M (2015) Property reinforcement of silicone dielectric elastomers filled with self-prepared calcium copper titanate particles. J Appl Polym Sci 132:42613 (1–6)

    Google Scholar 

  43. Duan L, Wang GL, Zhang YY, Zhang YN, Wei YY, Wang ZF, Zhang M (2018) High dielectric and actuated properties of silicone dielectric elastomers filled with magnesium-doped calcium copper titanate particles. Polym Compos 39:691–697

    Article  CAS  Google Scholar 

  44. Singh AP, Singh Y (2016) Dielectric behavior of CaCu3Ti4O12: Polyvinyl chloride ceramic polymer composites at different temperature and frequencies. Mod Electron Mater 2:121–126

    Article  Google Scholar 

  45. Xie C, Liang F, Ma M, Chen X, Lu W, Jia Y (2017) Microstructure and dielectric properties of PTFE-based composites filled by micron/submicron-blended CCTO. Crystals 7(5):126 (1–8)

    Article  CAS  Google Scholar 

  46. Yang J, Tang Z, Yin H, Liu Y, Wang L, Tang H, Li Y (2019) Poly (arylene ether nitrile) composites with surface-hydroxylated calcium copper titanate particles for High-temperature-resistant dielectric applications. Polymers 11(5):766 (1–11)

    Article  PubMed Central  CAS  Google Scholar 

  47. Rodgers B (2015) Rubber compounding: chemistry and applications. In: Hoover FI, To BH (eds) Vulcanization, 2nd edn. CRC Press, Florida, p 464

    Google Scholar 

  48. Choi SS (2001) Improvement of properties of silica-filled styrene–butadiene rubber compounds using acrylonitrile–butadiene rubber. J Appl Polym Sci 79:1127–1133

    Article  CAS  Google Scholar 

  49. Chokanandsombat Y, Owjinda S, Sirisinha C (2012) Comparison on properties of acrylonitrile styrene butadiene rubber (NSBR) and styrene butadiene rubber (SBR)/nitrile rubber (NBR) blends. KGK 11(12):41–46

    Google Scholar 

  50. Ismail H, Ramly A, Othman N (2011) The effect of carbon black/multiwall carbon nanotube hybrid fillers on the properties of natural rubber nanocomposites. Polym Plast Technol Eng 50:660–666

    Article  CAS  Google Scholar 

  51. Ismail H, Ishak S, Hamid Z (2013) Comparison effect of mica and talc as filler in EPDM composites on curing, tensile and thermal properties. Prog Rubber Plast Re 29:109–122

    Google Scholar 

  52. Dang ZM, Lin YQ, Xu HP, Shi CY, Li ST, Bai J (2008) Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability. Adv Funct Mater 18:1509–1517

    Article  CAS  Google Scholar 

  53. Salaeh S, Muensit N, Bomlai P, Nakason C (2011) Ceramic/natural rubber composites: influence types of rubber and ceramic materials on curing. mechanical, morphological, and dielectric properties. J Mater Sci 46:1723–1731

    Article  CAS  Google Scholar 

  54. Yuan X, Shen F, Wu G, Wu C (2007) Effects of acrylonitrile content on the coordination crosslinking reaction between acrylonitrile–butadiene rubber and copper sulfate. Mater Sci Eng C 459:82–85

    Article  CAS  Google Scholar 

  55. Song M, Zhao X, Li Y, Chan TW, Zhang L, Wu S (2014) Effect of acrylonitrile content on compatibility and damping properties of hindered phenol AO-60/nitrile-butadiene rubber composites: Molecular dynamics simulation. RSC Adv 4:48472–48479

    Article  CAS  Google Scholar 

  56. Thipdech P, Kunanuruksapong R, Sirivat A (2008) Electromechanical responses of poly(3-thiopheneacetic acid)/acrylonitrile-butadiene rubbers. Express Polym Lett 2(12):866–877

    Article  CAS  Google Scholar 

  57. Abd-El Messieh SL, Rozik NN, Youssef NF (2019) Eco-friendly composites based on ceramic tiles industrial wastes and acrylonitrile butadiene rubber. Polym Compos 40:544–552

    Article  CAS  Google Scholar 

  58. George S, Varughese K, Thomas S (1999) Dielectric properties of isotactic polypropylene/nitrile rubber blends: Effects of blend ratio, filler addition, and dynamic vulcanization. J Appl Polym Sci 73:255–270

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by a grant from the government budget of Prince of Songkla University and Natural Rubber Innovation Research Institute (NR-IRI), contract no. SIT610284S, the graduate school of Prince of Songkla University, and by Prince of Songkla University, Surat Thani Campus. The authors would like to express their gratitude to the Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, for providing their facilities and equipment. We are grateful to Assoc. Prof. Dr. Seppo Karrila for his assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wannarat Chueangchayaphan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luangchuang, P., Chueangchayaphan, N., Sulaiman, M.A. et al. High permittivity ceramics-filled acrylonitrile butadiene rubber composites: influence of acrylonitrile content and ceramic type. Polym. Bull. 78, 1755–1769 (2021). https://doi.org/10.1007/s00289-020-03181-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03181-9

Keywords

Navigation