Skip to main content
Log in

Preparation and properties of BaTiO3 filled butyl rubber composites for flexible electronic circuit applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Butyl rubber–micron barium titanate (BR/BT) and butyl rubber–nano barium titanate (BR/nBT) composites were prepared by sigma mixing followed by hot pressing. The tensile tests show that both the composites were mechanically flexible. The microwave dielectric properties of both BR/BT and BR/nBT composites were investigated as a function of ceramic loading and were found to be improved with filler content. The butyl rubber has a relative permittivity (εr) of 2.4 and loss tangent (tan δ) of 0.0017 at 5 GHz. At a filler loading of 0.24 volume fraction (vf) of micron sized barium titanate (BaTiO3) powder loading, the composite attained a εr of 7 and tan δ of 0.014 and for the same filler content of nano BaTiO3 the composite have εr of 8.9 and tan δ of 0.019 at 5 GHz. The thermal and mechanical properties of both the composites were investigated. The experimental values of εr of both BR/BT and BR/nBT composites for different volume fractions were compared with theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.C. Siegel, S.T. Phillips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Adv. Funct. Mater. 20, 28 (2010)

    Article  Google Scholar 

  2. D.H. Kim, J.A. Rogers, Stretchable electronics: materials, strategies and devices. Adv. Mater. 20, 4887 (2008)

    Article  Google Scholar 

  3. R.K. Kramer, C. Majidi, R. Sahai, R.J. Wood, in IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, vol. 1919, 25–30 September 2011

  4. Y.G. Seol, H.Y. Noh, S.S. Lee, J.H. Ahn, N.E. Lee, Appl. Phys. Lett. 93, 013305 (2008)

    Article  Google Scholar 

  5. M.T. Sebastian, H. Jantunen, Int. J. Appl. Ceram. Technol. 7, 415–434 (2010)

    Google Scholar 

  6. T. Hu, J. Juuti, H. Jantunen, T. Vilkman, J. Eur. Ceram. Soc. 27, 3997 (2007)

    Article  Google Scholar 

  7. J.W. Liou, B.S. Chiou, J. Phys.: Condens. Matter 10, 2773 (1998)

    Google Scholar 

  8. Z.M. Dang, Y. Zheng, H.P. Xu, J. Appl. Polym. Sci. 110, 3473 (2008)

    Article  Google Scholar 

  9. G. Panomsuwan, S. Kaewwatal, H. Manuspiyal, H. Ishida, in Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems Bangkok, vol. 497, Thailand, 16–19 January 2007

  10. G. Ioannou, A. Patsidis, G.C. Psarras, Compos. Part A Appl. Sci. Manuf. 42, 104 (2011)

    Article  Google Scholar 

  11. R. Popielarz, C.K. Chiang, R. Nozaki, J. Obrzut, Macromolecules 34, 5910 (2001)

    Article  Google Scholar 

  12. H.C. Pant, M.K. Patra, A. Verma, S.R. Vadera, N. Kumar, Acta Mater. 54, 3163 (2006)

    Article  Google Scholar 

  13. J. Chameswary, M.T. Sebastian, J. Mater. Sci.: Mater. Electron. 24, 4351 (2013)

    Google Scholar 

  14. D. Thomas, C. Janardhanan, M.T. Sebastian, Int. J. Appl. Ceram. Technol. 8, 1099 (2011)

    Article  Google Scholar 

  15. C. Janardhanan, D. Thomas, G. Subodh, S. Harshan, J. Philip, M.T. Sebastian, J. Appl. Polym. Sci. 124, 3426 (2012)

    Article  Google Scholar 

  16. F. Wang, W. Li, H. Jiang, M. Xue, J. Lu, J. Yao, J. Appl. Phys. 107, 043528 (2010)

    Article  Google Scholar 

  17. J. Krupka, K. Derzakowski, B. Riddle, J.B. Jarvis, Meas. Sci. Technol. 9, 1751 (1998)

    Article  Google Scholar 

  18. B. Sareni, L. Krahenubuh, A. Beroul, C. Brosseau, J. Appl. Phys. 81, 2375 (1997)

    Article  Google Scholar 

  19. A.H. Sihvola, IEEE Trans. Geosci. Remote Sens. 26, 420 (1988)

    Article  Google Scholar 

  20. K. Wakino, J. Am. Ceram. Soc. 76, 2588 (1993)

    Article  Google Scholar 

  21. A.V. Goncharenko, V.Z. Lozovski, E.F. Venger, Opt. Commun. 174, 19 (2000)

    Article  Google Scholar 

  22. F. Claro, R. Rojas, Phys. Rev. 43, 6369 (1991)

    Article  Google Scholar 

  23. N. Jayasundere, B.V. Smith, J. Appl. Phys. 73, 2462 (1993)

    Article  Google Scholar 

  24. Y. Rao, J. Qu, T. Marinis, C.P. Wong, IEEE Trans. Compon. Packag. Techol. 23, 680 (2000)

    Article  Google Scholar 

  25. E.F. Jaguaribe, D.E. Beasley, Int. J. Heat Mass Transf. 27, 399 (1984)

    Article  Google Scholar 

  26. J.K. Carson, S.J. Lovatt, D.J. Tanner, A.C. Cleland, J. Food Eng. 75, 297 (2006)

    Article  Google Scholar 

  27. D.W. Richerson, Modern ceramic engineering: properties processing and use in design (Taylor and Francis, CRC Press, London, 2006)

    Google Scholar 

  28. R.C. Progelhof, J.L. Throne, R.R. Ruetsch, Polym. Eng. Sci. 16, 615 (1976)

    Article  Google Scholar 

  29. G.T.N. Tsao, Ind. Eng. Chem. 53, 395 (1961)

    Article  Google Scholar 

  30. H. Zhao, R.K.Y. Li, Compos. Part A 39, 602 (2008)

    Article  Google Scholar 

  31. K.P. Murali, S. Rajesh, O. Prakash, A.R. Kulkarni, R. Ratheesh, Compos. Part A 40, 1179 (2009)

    Article  Google Scholar 

  32. R. Popielarz, C.K. Chiang, Mater. Sci. Eng., B 139, 48 (2007)

    Article  Google Scholar 

  33. L. Xie, X. Huang, C. Wu, P. Jiang, J. Mater. Chem. 21, 5897 (2011)

    Article  Google Scholar 

  34. K.P. Murali, S. Rajesh, K.J. Nijesh, R. Ratheesh, Int. J. Appl. Ceram. Technol. 7, 475 (2010)

    Google Scholar 

  35. I. Vrejoiu, J.D. Pedarnig, M. Dinescu, S.B. Gogonea, D. Bäuerle, Appl. Phys. A 74, 407 (2002)

    Article  Google Scholar 

  36. W. Ling, A. Gu, G. Liang, L. Yuan, 31, 307 (2010)

  37. W. Zhou, S. Qi, H. Li, S. Shao, Thermochim. Acta 452, 36 (2007)

    Article  Google Scholar 

  38. R.K. Goyal, P. Jadhav, A.N. Tiwari, J. Electron. Mater. 40(1377), 2011 (2011)

    Google Scholar 

  39. H. Ismail, S.T. Sam, A.F. Mohd Noor, A.A. Bakar, Polym. Plast. Technol. Eng. 46, 641 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The author Chameswary is grateful to Council of Scientific and Industrial Research (CSIR), India for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Sebastian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chameswary, J., Sebastian, M.T. Preparation and properties of BaTiO3 filled butyl rubber composites for flexible electronic circuit applications. J Mater Sci: Mater Electron 26, 4629–4637 (2015). https://doi.org/10.1007/s10854-015-2879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2879-5

Keywords

Navigation