Skip to main content
Log in

Structural characterization using SAXS and rheological behaviors of pluronic F127 and methylcellulose blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Binary polymeric mixtures containing pluronic F127 (PF) and methylcellulose were prepared to generate new thermosensitive matrices. The small-angle X-ray scattering (SAXS) behavior of PF/MC blends was investigated in relation to the temperature-dependent phase transition and rheological characteristic. Although 11% w/w PF (11PF) cannot form gel, the test tube tilting method and rheological analysis showed that the incorporation of 4% w/w methylcellulose (MC) into 11PF (11PF/MC) enabled the system to form gel upon heating. In addition, adding MC lowered the gelation temperature of 17% w/w PF (17PF). The ordered structure of these gels exhibited a face-centered cubic phase at intermediate temperature above the gelation temperature; the steep upturn of the SAXS curves was observed in the small scattering vector range at high temperatures (55–70 °C). The presence of MC might cause an MC-assisted interconnected network of micelles. At high temperatures, the gelation possibly involved MC-assisted intermicellar organization of PF as well as the gel network of MC. Etidronate sodium was incorporated into the matrices, and the drug did not significantly affect the thermosensitive gelation and the ordered structure of the polymeric systems. Furthermore, this study indicated that 11PF/MC was sol at 25 °C and became gel at body temperature of 37 °C. Therefore, blending PF with MC is a potential strategy for tailoring the thermosensitive performance of the in situ gelling preparation for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dimatteo R, Darling NJ, Segura T (2018) In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev 127:167–184

    Article  CAS  Google Scholar 

  2. Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev 64:154–162

    Article  Google Scholar 

  3. Escobar-Chávez JJ, López-Cervantes M, Naïk A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A (2006) Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci 9:339–358

    PubMed  Google Scholar 

  4. Sun K, Raghavan SR (2010) Thermogelling aqueous fluids containing low concentrations of pluronic F127 and laponite nanoparticles. Langmuir 26:8015–8020

    Article  CAS  Google Scholar 

  5. Rangabhatla ASL, Tantishaiyakul V, Oungbho K, Boonrat O (2016) Fabrication of pluronic and methylcellulose for etidronate delivery and their application for osteogenesis. Int J Pharm 499:110–118

    Article  CAS  Google Scholar 

  6. Meznarich NAK, Juggernauth KA, Batzli KM, Love BJ (2011) Structural changes in PEO-PPO-PEO gels induced by methylparaben and dexamethasone observed using time-resolved SAXS. Macromolecules 44:7792–7798

    Article  CAS  Google Scholar 

  7. Nascimento MHM, Franco MKKD, Yokaichyia F, de Paula E, Lombello CB, de Araujo DR (2018) Hyaluronic acid in Pluronic F-127/F-108 hydrogels for postoperative pain in arthroplasties: influence on physico-chemical properties and structural requirements for sustained drug-release. Int J Biol Macromol 111:1245–1254

    Article  CAS  Google Scholar 

  8. Ricardo NM, Ricardo NM, Costa Fde M, Bezerra FW, Chaibundit C, Hermida-Merino D et al (2012) Effect of water-soluble polymers, polyethylene glycol and poly(vinylpyrrolidone), on the gelation of aqueous micellar solutions of Pluronic copolymer F127. J Colloid Interface Sci 368:336–341

    Article  CAS  Google Scholar 

  9. Tomšič M, Prossnigg F, Glatter O (2008) A thermoreversible double gel: Characterization of a methylcellulose and κ-carrageenan mixed system in water by SAXS, DSC and rheology. J Colloid Interface Sci 322:41–50

    Article  Google Scholar 

  10. Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17:8062–8068

    Article  CAS  Google Scholar 

  11. Wu C, Liu T, Chu B (1998) A new separation medium for DNA capillary electrophoresis: self-assembly behavior of Pluronic polyol E99P69E99 in 1X TBE buffer. J Non-Cryst Solids 235–237:605–611

    Article  Google Scholar 

  12. Zhang M, Djabourov M, Bourgaux C, Bouchemal K (2013) Nanostructured fluids from pluronic® mixtures. Int J Pharm 454:599–610

    Article  CAS  Google Scholar 

  13. Itoh K, Hatakeyama T, Kimura T, Shimoyama T, Miyazaki S, D'Emanuele A et al (2010) Effect of D-sorbitol on the thermal gelation of methylcellulose formulations for drug delivery. Chem Pharm Bull 58:247–249

    Article  CAS  Google Scholar 

  14. Sangfai T, Tantishaiyakul V, Hirun N, Li L (2017) Microphase separation and gelation of methylcellulose in the presence of gallic acid and nacl as an in situ gel-forming drug delivery system. AAPS PharmSciTech 18:605–616

    Article  CAS  Google Scholar 

  15. Hirun N, Tantishaiyakul V, Sangfai T, Ouiyangkul P, Li L (2019) In situ mucoadhesive hydrogel based on methylcellulose/xyloglucan for periodontitis. J Sol-Gel Sci Technol 89:531–542

    Article  CAS  Google Scholar 

  16. Behera B, Patil V, Sagiri SS, Pal K, Ray SS (2012) Span-60-based organogels as probable matrices for transdermal/topical delivery systems. J Appl Polym Sci 125:852–863

    Article  CAS  Google Scholar 

  17. Kwon KW, Park MJ, Hwang J, Char K (2001) Effects of alcohol addition on gelation in aqueous solution of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. Polym J 33:404–410

    Article  CAS  Google Scholar 

  18. de Oliveira AC, Vilsinski BH, Bonafe EG, Monteiro JP, Kipper MJ, Martins AF (2019) Chitosan content modulates durability and structural homogeneity of chitosan-gellan gum assemblies. Int J Biol Macromol 128:114–123

    Article  Google Scholar 

  19. Nasatto PL, Pignon F, Silveira JLM, Duarte MER, Noseda MD, Rinaudo M (2015) Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 7:777–803

    Article  CAS  Google Scholar 

  20. Liu SJ, Li L (2015) Molecular interactions between PEO-PPO-PEO and PPO-PEO-PPO triblock copolymers in aqueous solution. Colloid Surface A 484:485–497

    Article  CAS  Google Scholar 

  21. Chaibundit C, Ricardo N, Ricardo N, Muryn CA, Madec MB, Yeates SG et al (2010) Effect of ethanol on the gelation of aqueous solutions of Pluronic F127. J Colloid Interface Sci 351:190–196

    Article  CAS  Google Scholar 

  22. Castelletto V, Caillet C, Fundin J, Hamley IW, Yang Z, Kelarakis A (2002) The liquid–solid transition in a micellar solution of a diblock copolymer in water. J Chem Phys 116:10947–10958

    Article  Google Scholar 

  23. Hamley IW, Pople JA, Fairclough JPA, Terrill NJ, Ryan AJ, Booth C et al (1998) Effect of shear on cubic phases in gels of a diblock copolymer. J Chem Phys 108:6929–6936

    Article  CAS  Google Scholar 

  24. Tomsic M, Guillot S, Sagalowicz L, Leser ME, Glatter O (2009) Internally self-assembled thermoreversible gelling emulsions: ISAsomes in methylcellulose, K-carrageenan, and mixed hydrogels. Langmuir 25:9525–9534

    Article  CAS  Google Scholar 

  25. Mortensen K, Batsberg W, Hvidt S (2008) Effects of PEO-PPO diblock impurities on the cubic structure of aqueous PEO-PPO-PEO pluronics micelles: fcc and bcc ordered structures in F127. Macromolecules 41:1720–1727

    Article  CAS  Google Scholar 

  26. Wu C, Liu T, Chu B (1997) Characterization of the PEO-PPO-PEO triblock copolymer and its application as a separation medium in capillary electrophoresis. Macromolecules 4574–4583:4574–4583

    Article  Google Scholar 

  27. Jiang J, Li C, Lombardi J, Colby RH, Rigas B, Rafailovich MH et al (2008) The effect of physiologically relevant additives on the rheological properties of concentrated Pluronic copolymer gels. Polymer 49:3561–3567

    Article  CAS  Google Scholar 

  28. Efrat R, Aserin A, Kesselman E, Danino D, Wachtel EJ, Garti N (2007) Liquid micellar discontinuous cubic mesophase from ternary monoolein/ethanol/water mixtures. Colloids Surf, A 299:133–145

    Article  CAS  Google Scholar 

  29. Pandit NK, Kisaka J (1996) Loss of gelation ability of Pluronic® F127 in the presence of some salts. Int J Pharm 145:129–136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thailand Science Research and Innovation (TSRI) Grant No. RSA6280027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimon Tantishaiyakul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonrat, O., Tantishaiyakul, V., Hirun, N. et al. Structural characterization using SAXS and rheological behaviors of pluronic F127 and methylcellulose blends. Polym. Bull. 78, 1175–1187 (2021). https://doi.org/10.1007/s00289-020-03154-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03154-y

Keywords

Navigation