Skip to main content
Log in

Comparative gelation of acrylic acid and acrylamide in diacrylate and dimethacrylate crosslinked matrices

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The radiation-induced gelation of two monomers, acrylic acid and acrylamide, crosslinked using four model compounds was investigated using Fourier transform mechanical spectroscopy. The gel point characteristics of the resulting hydrogels were compared. The gelation characteristics of the two monomers were very similar. The fractal dimensions of the critical gels ranged between 1.77 and 1.82 when the reactions were controlled. The patterns of viscoelastic events of the products at the gel point were also similar, with the matching reactivity of the monomers and the comparable molecular weight of the crosslinkable species, providing a foundation for such events. All of the reactions exhibited low mutation numbers, indicating that the samples tested were quasi-stable during the measurements. The extent of the UV irradiance during crosslinking reactions is an important parameter in the gelation process, with an increase in UV irradiance decreasing the gel times, decreasing the network relaxation exponents (increased fractal dimensions), leading to stiffer critical gels. The evolution of δ with G*, undertaken as van Gurp–Palmen plots, shows that in the fully formed gels, however, the monomer choice and the crosslinker variation can dictate the viscoelasticity of the materials. In particular, the potential for greater steric effects/greater stabilities of the radical active centres of the dimethacrylate species, in comparison with the diacrylate species, resulting in lesser viscoelasticities in the fully formed gels.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Safronov AP, Terziyan TV (2015) Formation of chemical networks of acrylamide and acrylic acid hydrogels initiated by ammonium persulfate. Polym Sci Ser B 57:481–487. https://doi.org/10.1134/S1560090415050140

    Article  CAS  Google Scholar 

  2. Magami SM, Williams RL (2018) Gelation studies on acrylic acid-based hydrogels via in situ photo-crosslinking and rheology. J Appl Polym Sci 135:46691. https://doi.org/10.1002/app.46691

    Article  CAS  Google Scholar 

  3. Magami SM, Williams RL (2019) Roles of the molecular weight of n-ethylene glycol diacrylates and UV irradiance on the mechanical properties at the gel point of acrylic acid based hydrogels. J Appl Polym Sci 136:47606. https://doi.org/10.1002/app.47606

    Article  CAS  Google Scholar 

  4. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50:1475–1486. https://doi.org/10.1080/03602559.2011.593082

    Article  CAS  Google Scholar 

  5. Mathur AM, Hammonds KF, Klier J, Scranton AB (1998) Equilibrium swelling of poly(methacrylic acid-g-ethylene glycol) hydrogels: EFFECT of swelling medium and synthesis conditions. J Control Release 54:177–184. https://doi.org/10.1016/S0168-3659(97)00186-7

    Article  CAS  PubMed  Google Scholar 

  6. Chen J, Ao Y, Lin T et al (2016) High-toughness polyacrylamide gel containing hydrophobic crosslinking and its double network gel. Polymer (Guildf) 87:73–80. https://doi.org/10.1016/j.polymer.2016.01.069

    Article  CAS  Google Scholar 

  7. Jiang G, Deng Z, He Y et al (2019) Cross-linked polyacrylamide gel as loss circulation materials for combating lost circulation in high temperature well drilling operation. J Pet Sci Eng 181:106250. https://doi.org/10.1016/j.petrol.2019.106250

    Article  CAS  Google Scholar 

  8. Abdulganiyu U, Magami SM, Aminu M (2017) Graft copolymerization and characterization of styrene with chitosan via radical polymerization. ChemSearch J 8:56–63. https://doi.org/10.4314/csj.v8i1.8

    Article  Google Scholar 

  9. Gardi C, Lungarella G (1984) Detection of elastase activity with a zymogram method after isoelectric focusing in polyacrylamide gel. Anal Biochem 140:472–477. https://doi.org/10.1016/0003-2697(84)90196-9

    Article  CAS  PubMed  Google Scholar 

  10. Decker C (1998) The use of UV irradiation in polymerization. Polym Int 45:133–141. https://doi.org/10.1002/(SICI)1097-0126(199802)45:2%3c133:AID-PI969%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  11. He H, Li L, Lee LJ (2008) Photopolymerization and structure formation of methacrylic acid based hydrogels: the effect of light intensity. React Funct Polym 68:103–113. https://doi.org/10.1016/j.reactfunctpolym.2007.10.006

    Article  CAS  Google Scholar 

  12. Samchenko YM, Ul’berg ZR, Komarskii SA et al (2003) Rheological properties of poly(acrylamide-co-acrylic acid) hydrogels. Colloid J 65:78–83. https://doi.org/10.1023/A:1022375109856

    Article  CAS  Google Scholar 

  13. Nesrinne S, Djamel A (2017) Synthesis, characterization and rheological behavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels. Arab J Chem 10:539–547. https://doi.org/10.1016/j.arabjc.2013.11.027

    Article  CAS  Google Scholar 

  14. Ge H, Wang S (2014) Thermal preparation of chitosan–acrylic acid superabsorbent: optimization, characteristic and water absorbency. Carbohydr Polym 113:296–303. https://doi.org/10.1016/j.carbpol.2014.06.078

    Article  CAS  PubMed  Google Scholar 

  15. Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ, (2004) Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40:1399–1407. https://doi.org/10.1016/j.eurpolymj.2004.01.039

    Article  CAS  Google Scholar 

  16. Yang M, Liu C, Li Z et al (2010) Temperature-responsive properties of poly(acrylic acid-co-acrylamide) hydrophobic association hydrogels with high mechanical strength. Macromolecules 43:10645–10651. https://doi.org/10.1021/ma1022555

    Article  CAS  Google Scholar 

  17. Magami SM (2017) In situ viscoelasticity and in situ thermo-responsiveness in acrylic acid-based soft hydrogels. IOP Conf Ser Mater Sci Eng 264:12019. https://doi.org/10.1088/1757-899x/264/1/012019

    Article  CAS  Google Scholar 

  18. Zhang SS, Tran DT, Zhang Z (2014) Poly(acrylic acid) gel as a polysulphide blocking layer for high-performance lithium/sulphur battery. J Mater Chem A 2:18288–18292. https://doi.org/10.1039/C4TA04417G

    Article  CAS  Google Scholar 

  19. Chrambach A, Rodbard D (1971) Polyacrylamide gel electrophoresis. Science (80- ) 172:440–451. https://doi.org/10.1126/science.172.3982.440

    Article  CAS  Google Scholar 

  20. Büyükköroğlu G, Dora DD, Özdemir F, Hızel C (2018) Chapter 15—techniques for protein analysis. In: Barh D, Azevedo V (eds) Omics technologies and bio-engineering: towards improving quality of life. Academic Press, pp 317–351. https://www.sciencedirect.com/science/article/pii/B9780128046593000154?via%3Dihub

  21. Holder AJ, Badiei N, Hawkins K et al (2018) Control of collagen gel mechanical properties through manipulation of gelation conditions near the sol–gel transition. Soft Matter 14:574–580. https://doi.org/10.1039/C7SM01933E

    Article  CAS  PubMed  Google Scholar 

  22. Winter HH (2002) The critical gel BT. In: Borsali R, Pecora R (eds) Structure and dynamics of polymer and colloidal systems. Springer, Dordrecht

    Google Scholar 

  23. Hawkins K, Lawrence M, Williams PR, Williams RL (2008) A study of gelatin gelation by Fourier transform mechanical spectroscopy. J Nonnewton Fluid Mech 148:127–133. https://doi.org/10.1016/j.jnnfm.2007.05.016

    Article  CAS  Google Scholar 

  24. Shindel MM, Furst EM (2015) Frequency modulated microrheology. Lab Chip 15:2460–2466. https://doi.org/10.1039/C5LC00351B

    Article  CAS  PubMed  Google Scholar 

  25. Ross-Murphy SB (1994) Rheological characterization of polymer gels and networks. Polym Gels Netw 2:229–237. https://doi.org/10.1016/0966-7822(94)90007-8

    Article  CAS  Google Scholar 

  26. Wyss HM (2016) Rheology of Soft Materials. In: Fluids, colloids and soft materials. Wiley, pp 149–163

  27. Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol (N Y N Y) 30:367–382. https://doi.org/10.1122/1.549853

    Article  CAS  Google Scholar 

  28. Winter HH (1987) Can the gel point of a cross-linking polymer be detected by the G′–G″ crossover? Polym Eng Sci 27:1698–1702. https://doi.org/10.1002/pen.760272209

    Article  CAS  Google Scholar 

  29. Scanlan JC, Winter HH (1991) The evolution of viscoelasticity near the gel point of end-linking poly(dimethylsiloxane)s. Makromol Chemie Macromol Symp 45:11–21. https://doi.org/10.1002/masy.19910450105

    Article  CAS  Google Scholar 

  30. Chiou B-S, English RJ, Khan SA (1996) Rheology and photo-cross-linking of thiol−ene polymers. Macromolecules 29:5368–5374. https://doi.org/10.1021/ma960383e

    Article  CAS  Google Scholar 

  31. Arora D, Winter HH (2010) Network formation in a crystallizing polymer. Polym Mater Sci Eng 103:208–209

    Google Scholar 

  32. Muthukumar M (1989) Screening effect on viscoelasticity near the gel point. Macromolecules 22:4656–4658. https://doi.org/10.1021/ma00202a050

    Article  CAS  Google Scholar 

  33. Laukkanen O-V, Winter HH, Seppälä J (2018) Characterization of physical aging by time-resolved rheometry: fundamentals and application to bituminous binders. Rheol Acta 57:745–756. https://doi.org/10.1007/s00397-018-1114-8

    Article  CAS  Google Scholar 

  34. Ghiringhelli E, Roux D, Bleses D et al (2012) Optimal Fourier rheometry. Rheol Acta 51:413–420. https://doi.org/10.1007/s00397-012-0616-z

    Article  CAS  Google Scholar 

  35. Pogodina NV, Winter HH (1998) Polypropylene crystallization as a physical gelation process. Macromolecules 31:8164–8172. https://doi.org/10.1021/ma980134l

    Article  CAS  Google Scholar 

  36. Tokita M, Hikichi K (1987) Mechanical studies of sol–gel transition: universal behavior of elastic modulus. Phys Rev A 35:4329–4333. https://doi.org/10.1103/PhysRevA.35.4329

    Article  CAS  Google Scholar 

  37. Magami SM, Williams RL (2019) Gelation via cationic chelation/crosslinking of acrylic acid-based polymers. Polym Int. https://doi.org/10.1002/pi.5910

    Article  Google Scholar 

  38. Chiou B-S, Raghavan SR, Khan SA (2001) Effect of colloidal fillers on the cross-linking of a UV-curable polymer: gel point rheology and the Winter−Chambon criterion. Macromolecules 34:4526–4533. https://doi.org/10.1021/ma010281a

    Article  CAS  Google Scholar 

  39. Carey FA, Sundberg RJ (2007) Advanced organic chemistry—part a: structure and mechanisms, 4th edn. Springer, New York

    Google Scholar 

  40. Mours M, Winter HH (1994) Time-resolved rheometry. Rheol Acta 33:385–397. https://doi.org/10.1007/BF00366581

    Article  CAS  Google Scholar 

  41. Li X, Zhao Y, Li D et al (2017) Hybrid dual crosslinked polyacrylic acid hydrogels with ultrahigh mechanical strength, toughness and self-healing properties via soaking salt solution. Polymer (Guildf) 121:55–63. https://doi.org/10.1016/j.polymer.2017.05.070

    Article  CAS  Google Scholar 

  42. Baker BA, Murff RL, Milam VT (2010) Tailoring the mechanical properties of polyacrylamide-based hydrogels. Polymer (Guildf) 51:2207–2214. https://doi.org/10.1016/j.polymer.2010.02.022

    Article  CAS  Google Scholar 

  43. Winter HH (1999) The critical gel—the universal material state between liquid and solid. In: 99 NATO ASI meeting. Les Houches, France

  44. Qin Q, Farrar MJ, Pauli AT, Adams JJ (2014) Morphology, thermal analysis and rheology of Sasobit modified warm mix asphalt binders. Fuel 115:416–425. https://doi.org/10.1016/j.fuel.2013.07.033

    Article  CAS  Google Scholar 

  45. Trinkle S, Walter P, Friedrich C (2002) Van Gurp–Palmen plot II—classification of long chain branched polymers by their topology. Rheol Acta 41:103–113. https://doi.org/10.1007/s003970200010

    Article  CAS  Google Scholar 

  46. Li R, Yu W, Zhou C (2006) Phase behavior and its viscoelastic responses of poly(methyl methacrylate) and poly(styrene-co-maleic anhydride) blend systems. Polym Bull 56:455–466. https://doi.org/10.1007/s00289-005-0499-6

    Article  CAS  Google Scholar 

  47. Rabek JF (1993) Experimental and analytic methods for the investigation of radiation curing. In: Fouassier JP, Rabek JF (eds) Radiation curing in polymer science and technology: fundamentals and methods, 1st edn. Elsevier, London

    Google Scholar 

  48. Jennings J, He G, Howdle SM, Zetterlund PB (2016) Block copolymer synthesis by controlled/living radical polymerisation in heterogeneous systems. Chem Soc Rev 45:5055–5084. https://doi.org/10.1039/C6CS00253F

    Article  CAS  PubMed  Google Scholar 

  49. Shibayama M, Li X, Sakai T (2018) Gels: from soft matter to biomatter. Ind Eng Chem Res 57:1121–1128. https://doi.org/10.1021/acs.iecr.7b04614

    Article  CAS  Google Scholar 

  50. Edmondson S, Gilbert M (2017) Chapter 2—the chemical nature of plastics polymerization. In: Gilbert M (ed) Brydson’s plastics materials. Butterworth-Heinemann, pp 19–37. https://www.sciencedirect.com/book/9780323358248/brydsons-plastics-materials

  51. O’Connell CD, Zhang B, Onofrillo C et al (2018) Tailoring the mechanical properties of gelatin methacryloyl hydrogels through manipulation of the photocrosslinking conditions. Soft Matter 14:2142–2151. https://doi.org/10.1039/C7SM02187A

    Article  PubMed  Google Scholar 

  52. Klotz BJ, Gawlitta D, Rosenberg AJWP et al (2016) Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol 34:394–407. https://doi.org/10.1016/j.tibtech.2016.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the Innovate UK agency, under the Knowledge Transfer Partnership programme (KTP). The author acknowledges the helpful discussions provided by Emeritus Professor Jim Guthrie (University of Leeds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saminu M. Magami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magami, S.M. Comparative gelation of acrylic acid and acrylamide in diacrylate and dimethacrylate crosslinked matrices. Polym. Bull. 78, 1001–1020 (2021). https://doi.org/10.1007/s00289-020-03147-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03147-x

Keywords

Navigation