Skip to main content

Advertisement

Log in

Thermo-mechanical and antimicrobial properties of natural rubber-based polyurethane nanocomposites for biomedical applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A polyester-type polyurethane (PU) was prepared using hydroxyl-terminated natural rubber (HTNR) as the soft polymer segments, 4,4-methylene dicyclohexyl diisocyanate (H12MDI) as the hard segments and 1,4-butane diol (BDO) as a chain extender. A simple one-shot bulk polymerization method using tetrahydrofuran (THF) as the solvent was chosen. The molar ratio of (H12MDI:HTNR:BDO) was fixed at 1.05:0.5:0.5. The pristine PU and its composite films with titanium nanoparticles (TiO2), silver nanoparticles (AgNPs) and benzoic acid (BA) were prepared with a constant 0.5 wt% loading of the antimicrobial fillers. The pristine PU and PU composite films were obtained by solution casting and drying at 60 °C in a vacuum oven. The effects of the antimicrobial fillers on the physical structure, mechanical properties, thermal properties, and antimicrobial activities were investigated. The SEM images showed that TiO2 and AgNPs aggregated. The aggregates reduced the films’ tensile strength as they obstructed the transfer of mechanical loads from PU matrix to the dispersed fillers. In contrast, BA was clearly well dispersed in the matrix giving much better mechanical properties (12 MPa tensile strength and 278% strain at break) and the PU–BA films were transparent. The PU–BA composites appear promising for biomedical applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Filip D, Macocinschi D, Vlad S (2011) Thermogravimetric study for polyurethane materials for biomedical applications. Compos Part B Eng 42(6):1474–1479. https://doi.org/10.1016/j.compositesb-2011.04.050

    Article  Google Scholar 

  2. Phinyocheep P, Phetphaisit C, Derouet D, Campistron I, Brosse J (2005) Chemical degradation of epoxidized natural rubber using periodic acid: preparation of epoxidized liquid natural rubber. J Appl Polym Sci 95(1):6–15. https://doi.org/10.1002/app.20812

    Article  CAS  Google Scholar 

  3. Hsu S-h, Tseng H-J, Lin Y-C (2010) The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 31(26):6796–6808. https://doi.org/10.1016/j.biomaterials.2010.05.015

    Article  CAS  PubMed  Google Scholar 

  4. Rithesh Raj D, Sudarsanakumar C (2017) Surface plasmon resonance based fiber optic sensor for the detection of cysteine using diosmin capped silver nanoparticles. Sens Actuators A Phys 253:41–48. https://doi.org/10.1016/j.sna.2016.11.019

    Article  CAS  Google Scholar 

  5. Dong C, Zhang X, Cai H, Cao C, Zhou K, Wang X, Xiao X (2016) Synthesis of stearic acid-stabilized silver nanoparticles in aqueous solution. Adv Powder Technol 27(6):2416–2423. https://doi.org/10.1016/j.apt.2016.08.018

    Article  CAS  Google Scholar 

  6. Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA (2015) Noble metals in medicine: latest advances. Coord Chem Rev 284:329–350. https://doi.org/10.1016/j.ccr.2014.-08.002

    Article  CAS  Google Scholar 

  7. Zhang X, Xiao G, Wang Y, Zhao Y, Su H, Tan T (2017) Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohyd Polym 169:101–107. https://doi.org/10.1016/j.carbpol.2017.03.073

    Article  CAS  Google Scholar 

  8. Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, Rai M (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103(7):1931–1944. https://doi.org/10.1002/jps.24001

    Article  CAS  PubMed  Google Scholar 

  9. Levi-Polyachenko N, Jacob R, Day C, Kuthirummal N (2016) Chitosan wound dressing with hexagonal silver nanoparticles for hyperthermia and enhanced delivery of small molecules. Colloids Surf B Biointerfaces 142:315–324. https://doi.org/10.1016/j.colsurfb.2016.-02.038

    Article  CAS  PubMed  Google Scholar 

  10. Macocinschi D, Filip D, Zaltariov MF, Varganici CD (2015) Thermal and hydrolytic stability of silver nanoparticle polyurethane biocomposites for medical applications. Polym Degrad Stab 121:238–246. https://doi.org/10.1016/j.polymdegradstab.2015.09.017

    Article  CAS  Google Scholar 

  11. Rausch KW, Sayigh AAR (1965) Structure property relationships in polyurethane elastomers prepared by one-step reaction. I&EC Product Res Dev 4(2):92–98. https://doi.org/10.1021/i360014a008

    Article  CAS  Google Scholar 

  12. Kébir N, Campistron I, Laguerre A, Pilard JF, Bunel C, Jouenne T (2007) Use of telechelic cis-1,4-polyisoprene cationomers in the synthesis of antibacterial ionic polyurethanes and copolyurethanes bearing ammonium groups. Biomaterials 28(29):4200–4208. https://doi.org/10.1016/j.biomaterials.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  13. Ranoszek-Soliwoda K, Tomaszewska E, Socha E, Krzyczmonik P, Ignaczak A, Orlowski P, Krzyzowska M, Celichowski G, Grobelny J (2017) The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J Nanopart Res 19(8):273. https://doi.org/10.1007/s11051-017-3973-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu Q, Li X, Fan Z, Xu Y, Niu H, Li C, Dang Y, Huang Z, Wang Y, Guan J (2018) Biomimetic polyurethane/TiO2 nanocomposite scaffolds capable of promoting biomineralization and mesenchymal stem cell proliferation. Mater Sci Eng C Mater Biol Appl 85:79–87. https://doi.org/10.1016/j.msec.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  15. da Silva VD, dos Santos LM, Subda S, Ligabue R, Seferin M, Carone C, Einloft S (2013) Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization. Polym Bull 70:1819–1833. https://doi.org/10.1007/s00289-013-0927-y

    Article  CAS  Google Scholar 

  16. Al-Naamani L, Dobretsov S, Dutta J (2016) Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol 38:231–237. https://doi.org/10.1016/j.ifset.2016.10.010

    Article  CAS  Google Scholar 

  17. Nayak V, Jyothi MS, Balakrishna RG, Padaki M, Ismail AF (2015) Preparation and characterization of chitosan thin films on mixed-matrix membranes for complete removal of chromium. ChemistryOpen 4(3):278–287. https://doi.org/10.1002/open.201402133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeytuncu B, Morcali MH (2015) Fabrication and characterization of antibacterial polyurethane acrylate-based materials. Mater Res 18:867–872. https://doi.org/10.1590/1516-1439.026515

    Article  CAS  Google Scholar 

  19. Chung Y-C, Jo SH, Kim HY, Chun BC (2016) Characterization and effect of covalently grafted benzoic acid on the low temperature flexibility and water vapor permeability of a polyurethane copolymer. Polym Plast Technol Eng 55(4):356–367. https://doi.org/10.1080/03602559.2015.-1098678

    Article  CAS  Google Scholar 

  20. Shahbazi M, Rajabzadeh G, Ahmadi SJ (2017) Characterization of nanocomposite film based on chitosan intercalated in clay platelets by electron beam irradiation. Carbohyd Polym 157:226–235. https://doi.org/10.1016/j.carbpol.2016.09.018

    Article  CAS  Google Scholar 

  21. D’Orazio L, Grippo A (2015) A water dispersed titanium dioxide/poly-(carbonate urethane) nanocomposite for protecting cultural heritage: preparation and properties. Prog Org Coat 79:1–7. https://doi.org/10.1016/j.porgcoat.2014.09.017

    Article  CAS  Google Scholar 

  22. Rzeszutek K, Chow A (1998) An investigation into the sorption of benzoic acids by polyurethane membrane. Talanta 47(3):697–709. https://doi.org/10.1016/S0039-9140(98)00115-5

    Article  CAS  PubMed  Google Scholar 

  23. Chen JH, Wei J, Chang CY, Laiw RF, Lee YD (1998) Studies on segmented polyether urethane for biomedical application: effects of composition and hard segment content on biocompatibility. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater 41(4):633–648. https://doi.org/10.1002/(SICI)-1097-4636(19980915)41:4%3C633:AIDBM

    Article  CAS  Google Scholar 

  24. Wang H, Yu J, Fang H, Wei H, Wang X, Ding Y (2018) Largely improved mechanical properties of a biodegradable polyurethane elastomer via polylactide stereocomplexation. Polymer 137:1–12. https://doi.org/10.1016/j.poly-mer.2017.12.067

    Article  Google Scholar 

  25. Petrović ZS, Zavargo Z, Flyn JH, Macknight WJ (1994) Thermal degradation of segmented polyurethanes. J Appl Polym Sci 51(6):1087–1095. https://doi.org/10.1002/app.1994.070510615

    Article  Google Scholar 

  26. Jiao L, Xiao H, Wang Q, Sun J (2013) Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym Degrad Stab 98(12):2687–2696. https://doi.org/10.1016/j.polymdegradstab.2013.09.032

    Article  CAS  Google Scholar 

  27. Rivière L, Caussé N, Lonjon A, Dantras É, Lacabanne C (2016) Specific heat capacity and thermal conductivity of peek/ag nanoparticles composites determined by modulated-temperature differential scanning calorimetry. Polym Degrad Stab 127:98–104. https://doi.org/10.1016/j.polymdegradstab.2015.11.015

    Article  CAS  Google Scholar 

  28. Smith SJ, Stevens R, Liu S, Li G, Navrotsky A, Boerio-Goates J, Woodfield BF (2009) Heat capacities and thermodynamic functions of TiO2 anatase and rutile: analysis of phase stability. Am Miner 94(2–3):236–243

    Article  CAS  Google Scholar 

  29. Thongsang S, Vorakhan W, Wimolmala E, Sombatsompop N (2012) Dynamic mechanical analysis and tribological properties of NR vulcanizates with fly ash/precipitated silica hybrid filler. Tribol Int 53:134–141. https://doi.org/10.1016/j.triboint.2012.04.006

    Article  CAS  Google Scholar 

  30. Abbasi E, Milani M, Fekri Aval S, Kouhi M, Akbarzadeh A, Tayefi Nasrabadi H, Nikasa P, Joo SW, Hanifehpour Y, Nejati-Koshki K (2016) Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol 42(2):173–180. https://doi.org/10.3109/-1040841X.2014.912200

    Article  CAS  PubMed  Google Scholar 

  31. Willey JM, Sherwood LM, Woolverton CJ (2008) Prescott, Harley and Klein’s microbiology, 7th edn. McGrawHill Company, New York, p 578

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Faculty of Science and Industrial Technology for the use of their laboratory facilities and to Assoc. Prof. Dr. Seppo Karrila for reviewing the manuscript. This work was supported by the government budget (or budget revenue) of Prince of Songkla University year 2015, Grant No. SIT590171d.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekasit Anancharoenwong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anancharoenwong, E., Chueangchayaphan, W., Rakkapao, N. et al. Thermo-mechanical and antimicrobial properties of natural rubber-based polyurethane nanocomposites for biomedical applications. Polym. Bull. 78, 833–848 (2021). https://doi.org/10.1007/s00289-020-03137-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03137-z

Keywords

Navigation