Skip to main content
Log in

Synthesis of surface-functionalized polymer particles prepared by amphiphilic macromonomers with hydrophobic end groups

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of amphiphilic poly(vinyl ether)-based macromonomers having an aromatic ring, such as phenyl, naphthyl, and anthryl group, at ω-terminus (MA-PMEEVE-Ph, MA-PMEEVE-Nap, and MA-PMEEVE-Ant) were synthesized by living cationic polymerization and reductive amination. The obtained amphiphilic macromonomers possess narrow molecular distributions (Mw/Mn = 1.14–1.41) and well-controlled degree of polymerization (DPn ≈ 40). In addition, the functionality of the ω-terminus is equal to unity for all the macromonomers. Then, copolymerizations of the obtained macromonomers with styrene in polar solvents were performed to form nearly monodisperse polymer particles. In order to clarify the effect of the terminal hydrophobic group on particle formation behavior, we have investigated the relationships between the feed ratio of the macromonomers to styrene and particle diameter (Dn) and distribution of the particle diameter. As a result, MA-PMEEVE-Ant afforded the smallest polymer particle of Dn = 70 nm. It was also found that the particle diameter can be controlled by tuning the hydrophobicity of the ω-terminus group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Urban D, Takamura K (2002) Polymer dispersions and their industrial applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Gilbert RG (1995) Emulsion polymerization: a mechanistic approach. Academic Press, London

    Google Scholar 

  3. Richez AP, Yow HN, Biggs S, Cayre OJ (2013) Dispersion polymerization in non-polar solvent: evolution toward emerging applications. Prog Polym Sci 38:897–931. https://doi.org/10.1016/j.progpolymsci.2012.12.001

    Article  CAS  Google Scholar 

  4. Itoh T, Kojima K, Shimomoto H, Ihara E (2018) Control of lengths and densities of surface-attached chains on polymer particles prepared by dispersion polymerization using macromonomer stabilizer. Polymer 158:158–165. https://doi.org/10.1016/j.polymer.2018.10.040

    Article  CAS  Google Scholar 

  5. Kawaguchi K (2000) Functional polymer microspheres. Prog Polym Sci 25:1171–1210. https://doi.org/10.1016/S0079-6700(00)00024-1

    Article  CAS  Google Scholar 

  6. Barner L (2009) Synthesis of microspheres as versatile functional scaffolds for materials science applications. Adv Mater 21:2547–2553. https://doi.org/10.1002/adma.200900373

    Article  CAS  Google Scholar 

  7. Li P, Zhu J, Sunintaboon P, Harris FW (2002) New route to amphiphilic core–shell polymer nanospheres: graft copolymerization of methyl methacrylate from water-soluble polymer chains containing amino groups. Langmuir 18:8641–8646. https://doi.org/10.1021/la0261343

    Article  CAS  Google Scholar 

  8. Bütün V, Wang XS, De Paz Báñez MV, Robinson KL, Billingham NC, Armes SP, Tuzar Z (2000) Synthesis of shell cross-linked micelles at high solids in aqueous media. Macromolecules 33:1–3. https://doi.org/10.1021/ma9914669

    Article  CAS  Google Scholar 

  9. Huang H, Remsen EE, Kowalewski T, Wooley KL (1999) Nanocages derived from shell cross-linked micelle templates. J Am Chem Soc 121:3805–3806. https://doi.org/10.1021/ja983610w

    Article  CAS  Google Scholar 

  10. Thurmond KB, Kowalewski T, Wooley KL (1996) Water-soluble knedel-like structures: the preparation of shell-cross-linked small particles. J Am Chem Soc 118:7239–7240. https://doi.org/10.1021/ja961299h

    Article  CAS  Google Scholar 

  11. Amalvy JL, Wanless EJ, Li Y, Michailidou V, Armes SP, Duccini Y (2004) Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates. Langmuir 20:8992–8999. https://doi.org/10.1021/la049156t

    Article  CAS  PubMed  Google Scholar 

  12. Elsesser MT, Hollingsworth AD (2010) Revisiting the synthesis of a well-known comb-graft copolymer stabilizer and its application to the dispersion polymerization of poly(methyl methacrylate) in organic media. Langmuir 26:17989–17996. https://doi.org/10.1021/la1034917

    Article  CAS  PubMed  Google Scholar 

  13. McKee JR, Ladmiral V, Niskanen J, Tenhu H, Armes SP (2011) Synthesis of sterically-stabilized polystyrene latexes using well-defined thermoresponsive poly(N-isopropylacrylamide) macromonomers. Macromolecules 44:7692–7703. https://doi.org/10.1021/ma2016584

    Article  CAS  Google Scholar 

  14. Pargen S, Willems C, Keul H, Pjch A, Möller M (2012) Surfactant-free synthesis of polystyrene nanoparticles using oligoglycidol macromonomers. Macromolecules 45:1230–1240. https://doi.org/10.1021/ma2021437

    Article  CAS  Google Scholar 

  15. Zhang M, Hutchinson RA (2018) Synthesis and utilization of low dispersity acrylic macromonomer as dispersant for nonaqueous dispersion polymerization. Macromolecules 51:6267–6275. https://doi.org/10.1021/acs.macromol.8b01169

    Article  CAS  Google Scholar 

  16. Motoyanagi J, Nagura K, Sawada K, Miki S, Minoda M (2012) Synthesis of an amphiphilic macromonomer bearing a terminal fluorene moiety and its application to the preparation of fluorescent polymer particles. Chem Lett 41:1487–1488. https://doi.org/10.1246/cl.2012.1487

    Article  CAS  Google Scholar 

  17. Motoyanagi J, Tan NM, Minoda M (2014) Synthesis of well-defined poly(vinyl ether)-based macromonomers having pendant glycerols via living cationic polymerization and their application to the preparation of core–shell polymer particles. Polym Int 63:459–464. https://doi.org/10.1002/pi.4526

    Article  CAS  Google Scholar 

  18. Motoyanagi J, Tan NM, Tanaka T, Minoda M (2019) Protecting group-free synthesis of glycopolymer-type amphiphilic macromonomers and their use for the preparation of carbohydrate-decorated polymer particles. Biomolecules 9:72. https://doi.org/10.3390/biom9020072

    Article  CAS  PubMed Central  Google Scholar 

  19. Miyashita M, Kamigaito M, Sawamoto M, Higashimura T (1994) End-functionalized polymers of styrene and p-methylstyrene by living cationic polymerization with functionalized initiators. Macromolecules 27:1093–1098. https://doi.org/10.1021/ma00083a005

    Article  CAS  Google Scholar 

  20. Callan JF, Kamila S, Singh N, Mulrooney RC, MacKay M, Cronin MC, Dunn J, Durham DG (2009) A new class of fluorescent chemosensors based on the β-aminobisphosphonate receptor. Supramol Chem 21:643–649. https://doi.org/10.1080/10610270802709352

    Article  CAS  Google Scholar 

  21. Minoda M, Shimizu T, Miki S, Motoyanagi J (2012) Thermoresponsive NIPAM block copolymers containing densely grafted poly(vinyl ether) brushes synthesized by a combination of living cationic polymerization and RAFT polymerization. J Polym Sci A 28:1127–1136. https://doi.org/10.1002/pola.26421

    Article  CAS  Google Scholar 

  22. Nuopponen M, Kalliomäki K, Aseyev V, Tenhu H (2008) Spontaneous and thermally induced self-organization of A– B–A stereoblock polymers of N-isopropylacrylamide in aqueous solutions. Macromolecules 41:4884–4886. https://doi.org/10.1021/ma800083t

    Article  CAS  Google Scholar 

  23. Marcelo G, Burns F, Ribeiro T, Martinho JMG, Tarazona MP, Saiz E, Moffitt MG, Farinha JPS (2017) Versatile tetrablock copolymer scaffold for hierarchical colloidal nanoparticle assemblies: synthesis, characterization, and molecular dynamics simulation. Langmuir 33:8201–8212. https://doi.org/10.1021/acs.langmuir.7b01687

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Maruzen Petrochemical (Tokyo, Japan) for providing vinyl ether monomers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Motoyanagi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motoyanagi, J., Che Harun, N.F. & Minoda, M. Synthesis of surface-functionalized polymer particles prepared by amphiphilic macromonomers with hydrophobic end groups. Polym. Bull. 77, 5847–5857 (2020). https://doi.org/10.1007/s00289-019-03044-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03044-y

Keywords

Navigation