Skip to main content
Log in

Synthesis and characterization of pH- and thermo-responsive hydrogels based on poly(2-cyclopropyl-2-oxazoline) macromonomer, sodium acrylate, and acrylamide

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

New graft copolymer hydrogels based on sodium acrylate, acrylamide, and styryl-terminated poly(2-cyclopropyl-2-oxazoline) macromonomer (MM) were synthetized by free radical polymerization using N,N′-methylenebisacrylamide as cross-linker. The polymerization was carried out in water at 5 °C and was initiated by sodium peroxodisulfate/N,N,N′,N′-tetramethylethylenediamine. The MM and the hydrogels were characterized by NMR and FTIR spectroscopy. In the hydrogels, the sodium acrylate provided the sensitivity to changes in pH value while the MM provided sensitivity to temperature. In dependence of their composition, the bi-sensitive hydrogels showed conformational transitions with variation of temperature or pH value. This property was shown macroscopically as a hydrogel volume contraction or expansion as it was determined by swelling experiments in water at different pH values and temperatures. Due to phase separation within the hydrogels facilitated by the graft copolymer network structure, both sensitivities could be addressed individually by both triggers and defined swelling states could be addressed over a wide range by adjusting both temperature and pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stuart M, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk V, Urban S, Zauscher S, Luzinov I, Minko S, Winnik F (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113. https://doi.org/10.1038/nmat2614

    Article  CAS  PubMed  Google Scholar 

  2. Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep 93:1–49. https://doi.org/10.1016/j.mser.2015.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gil E, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222. https://doi.org/10.1016/j.progpolymsci.2004.08.003

    Article  CAS  Google Scholar 

  4. Weber C, Hoogenboom R, Schubert U (2012) Temperature responsive bio-compatible polymers based on poly (ethylene oxide) and poly(2-oxazoline)s. Prog Polym Sci 37:686–714. https://doi.org/10.1016/j.progpolymsci.2011.10.002

    Article  CAS  Google Scholar 

  5. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:63–249. https://doi.org/10.1016/0079-6700(92)90023-R

    Article  Google Scholar 

  6. Richter A (2009) Hydrogels for actuators. In: Gerlach G, Arndt KF (eds) Hydrogel sensors and actuators. Chapter 7. Springer, Berlin

  7. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492. https://doi.org/10.1038/nature02388

    Article  CAS  PubMed  Google Scholar 

  8. Dimitrov I, Trzebicka B, Müller A, Dworak A, Tsvetanov C (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275–1343. https://doi.org/10.1016/j.progpolymsci.2007.07.001

    Article  CAS  Google Scholar 

  9. Rueda JC, Zschoche S, Komber H, Schmaljohann D, Voit B (2005) Synthesis and characterization of thermoresponsive graft copolymers of NIPAAm and 2-alkyl-2-oxazolines by the “grafting from” method. Macromolecules 38:7330–7336. https://doi.org/10.1021/ma050570p

    Article  CAS  Google Scholar 

  10. Park JS, Kataoka K (2007) Comprehensive and accurate control of thermosensitivity of poly(2-alkyl-2-oxazoline)s via well-defined gradient or random copolymerization. Macromolecules 40:3599–3609. https://doi.org/10.1021/ma0701181

    Article  CAS  Google Scholar 

  11. Bloksma MM, Weber C, Perevyazko IY, Kuse A, Baumgärtel A, Vollrath A, Hoogenboom R, Schubert US (2011) Poly(2-cyclopropyl-2-oxazoline): from rate acceleration by cyclopropyl to thermoresponsive properties. Macromolecules 44:4057–4064. https://doi.org/10.1021/ma200514n

    Article  CAS  Google Scholar 

  12. Hoogenboom R, Schlaad H (2017) Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polym Chem 8:24–40. https://doi.org/10.1039/C6PY01320A

    Article  CAS  Google Scholar 

  13. Diehl C, Cernoch P, Zenke I, Runge H, Pitschke R, Hartmann J, Tierschc B, Schlaad H (2010) Mechanistic study of the phase separation/crystallization process of poly(2-isopropyl-2-oxazoline) in hot water. Soft Matter 6:3784–3788. https://doi.org/10.1039/c0sm00114g

    Article  CAS  Google Scholar 

  14. Aoi K, Okada M (1996) Polymerization of oxazolines. Prog Polym Sci 21:151–208. https://doi.org/10.1016/0079-6700(95)00020-8

    Article  CAS  Google Scholar 

  15. Hoogenboom R, Fijten MWM, Schubert US (2004) Parallel kinetic investigation of 2-oxazoline polymerizations with different initiators as basis for designed copolymer synthesis. J Polym Sci Part A Polym Chem 42:1830–1840. https://doi.org/10.1002/pola.20024

    Article  CAS  Google Scholar 

  16. Verbraeken B, Monnery B, Lava K, Hoogenboom R (2017) The chemistry of poly(2-oxazoline)s. Eur Polym J 88:451–469. https://doi.org/10.1016/j.eurpolymj.2016.11.016

    Article  CAS  Google Scholar 

  17. Rueda JC, Campos E, Komber H, Zschoche S, Häussler L, Voit B (2014) Synthesis and characterization of new pH- and thermo-responsive hydrogels based on N-isopropylacrylamide and 2-oxazolines. Des Monomers Polym 17:208–216. https://doi.org/10.1080/15685551.2013.840471

    Article  CAS  Google Scholar 

  18. Kuckling D (2009) Responsive hydrogel layers—from synthesis to applications. Colloid Polym Sci 287:881–891. https://doi.org/10.1007/s00396-009-2060-x

    Article  CAS  Google Scholar 

  19. Krause AT, Zschoche Z, Rohn M, Hempel C, Richter A, Appelhans D, Voit B (2016) Swelling behavior of bisensitive IPNs for microfluidic applications. Soft Matter 12:5529–5536. https://doi.org/10.1039/C6SM00720A

    Article  CAS  PubMed  Google Scholar 

  20. Richter A, Kuckling D, Howitz S, Gehring T, Arndt KF (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753. https://doi.org/10.1109/JMEMS.2003.817898

    Article  Google Scholar 

  21. Gräfe D, Erdmann T, Richter A, Appelhans D, Voit B (2017) Tetra-sensitive graft copolymer gels as chemomechanical valve. ACS Appl Mater Interfaces 9:7565–7576. https://doi.org/10.1021/acsami.6b14931

    Article  CAS  PubMed  Google Scholar 

  22. Witte H, Seeliger W (1974) Cyclische Imidsäureester aus Nitrilen und Aminoalkoholen. Liebigs Ann Chem. https://doi.org/10.1002/jlac.197419740615

    Article  Google Scholar 

  23. Feng XD, Guo XQ, Qiu KY (1988) Study of the initiation mechanism of the vinyl polymerization with the system persulfate/N, N, N′, N′-tetramethylethylendiamine. Makromol Chemie 189:77–83. https://doi.org/10.1002/macp.1988.021890108

    Article  CAS  Google Scholar 

  24. Nuño-DonLucas S, Rhoton AI, Crona-Galvan S, Puig JE, Kaler EW (1993) Emulsion copolymerization of styrene and sodium acrylate. Polym Bull 30:207–214. https://doi.org/10.1007/BF00296851

    Article  Google Scholar 

  25. Minsk LM, Kotlarchik C, Meyer GN (1973) Copolymerization of acrylamide and styrene II. Reactivity ratios with unperturbed acrylamide. J Polym Sci Polym Chem Ed 11:3037–3130. https://doi.org/10.1002/pol.1973.170111201

    Article  CAS  Google Scholar 

  26. Weber C, Becer CR, Guenther W, Hoogenboom R, Schubert US (2019) Dual responsive methacrylic acid and oligo(2-ethyl-2-oxazoline) containing graft copolymers. Macromolecules 43:160–167. https://doi.org/10.1021/ma902014q

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. M. Malanin (IPF Dresden) for the ATR-FTIR measurements on the hydrogels. J. C. R. and C. S. gratefully acknowledge the Deutschen Akademischen Austauschdienst (DAAD), the Pontifical Catholic University of Peru (PUCP), and the National Council of Science, Technology and Technological Innovation of Peru (CONCYTEC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Voit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 734 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rueda, J.C., Suárez, C., Komber, H. et al. Synthesis and characterization of pH- and thermo-responsive hydrogels based on poly(2-cyclopropyl-2-oxazoline) macromonomer, sodium acrylate, and acrylamide. Polym. Bull. 77, 5553–5565 (2020). https://doi.org/10.1007/s00289-019-03034-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03034-0

Navigation