Skip to main content
Log in

Adsorptive abatement of ciprofloxacin using NiFe2O4 nanoparticles incorporated into G. ghatti-cl-P(AAm) nanocomposites hydrogel: isotherm, kinetic, and thermodynamic studies

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The discharge of contaminated water acquires the high concentration level of antibiotic into water has emerged as serious environmental threat due to their effect on the living organism. The present work involves the formation of G. ghatti-cl-P(AAm) and novel G. ghatti-cl-P(AAm)/NiFe2O4 (HGNFNC) bio-nanocomposites. The novel G. ghatti-cl-P(AAm)/NiFe2O4 is investigated for the elimination of ciprofloxacin hydrochloride from aqueous environment in batch experiment. The development of system confirmed by FTIR, TGA, SEM, EDS, and XRD techniques. The effect of different parameters like the adsorbent dosage, pH, and temperature on the elimination of ciprofloxacin hydrochloride was evaluated. The removal of ciprofloxacin hydrochloride by HGNFNC is fitted well with the Langmuir isotherm and the pseudo-second-order kinetic model with the 274.84 mg/g of maximum adsorption efficiency. The development of adsorbent at predetermined condition as 0.003 g/mL adsorbent dosage, pH 6, and 298 K temperature displays the good efficiency. The data of thermodynamic parameters exhibit that the adsorption process was exothermic and spontaneous. The G. ghatti-cl-P(AAm)/NiFe2O4 has good reuse ability. This study proved that G. ghatti-cl-P(AAm)/NiFe2O4 is a promising adsorbent for the abatement of ciprofloxacin hydrochloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

G. ghatti:

Gum ghatti

HGNFNC:

G. ghatti-cl-P(AAm)/NiFe2O4 bio-nanocomposites

KPS:

Potassium persulfate

ABC:

Ascorbic acid

AAm:

Acrylamide

Bis:

N,N′-Methylene bis-acrylamide

CIP:

Ciprofloxacin hydrochloride

NPs:

Nanoparticles

P(AAm):

Poly(acrylamide)

References

  1. Zhao L, Deng J, Sun P, Liu J, Ji Y, Nakada N, Qiao Z, Tanaka H, Yang Y (2018) Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis. Sci Total Environ 627:1253–1263

    CAS  PubMed  Google Scholar 

  2. Zhuang Y, Yu F, Ma J, Chen J (2017) Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel. J Colloid Interface Sci 507:250–259

    CAS  PubMed  Google Scholar 

  3. Ribeiro AVFN, Belisario M, Galazzi RM, Balthazar DC, Pereira MDG, Ribeiro JN (2011) Evaluation of two bioadsorbents for removing paracetamol from aqueous media. Electron J Biotechnol 14(6):1–10

    Google Scholar 

  4. Genç N, Dogan EC, Yurtsever M (2013) Bentonite for ciprofloxacin removal from aqueous solution. Water Sci Technol 68:848–855

    PubMed  Google Scholar 

  5. Yu F, Sun S, Han S, Zheng J, Ma J (2016) Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem Eng J 285:588–595

    CAS  Google Scholar 

  6. Sun SP, Hatton TA, Chung TS (2011) Hyperbranched polyethyleneimine induced cross-linking of polyamide–imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin. Environ Sci Technol 45:4003–4009

    CAS  PubMed  Google Scholar 

  7. De Witte B, Dewulf J, Demeestere K, Langenhove HV (2009) Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water. J Hazard Mater 161(397):701–708

    PubMed  Google Scholar 

  8. Girardi C, Greve J, Lamshöft M, Fetzer I, Miltner A, Schäffer A, Kästner M (2011) Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. J Hazard Mater 198:22–30

    CAS  PubMed  Google Scholar 

  9. Yan Y, Sun S, Song Y, Yan X, Guan W, Liu X, Shi W (2013) Microwave-assisted in situ synthesis of reduced graphene oxide–BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin. J Hazard Mater 250:106–114

    PubMed  Google Scholar 

  10. Li MF, Liu YG, Liu SB, Zeng GM, Hu XJ, Tan XF, Jiang LH, Liu N, Wen J, Liu XH (2018) Performance of magnetic graphene oxide/diethylenetriaminepentaacetic acid nanocomposite for the tetracycline and ciprofloxacin adsorption in single and binary systems. J Colloid Interface Sci 521:150–159

    CAS  PubMed  Google Scholar 

  11. Mohan D, Sarswat A, Yong SO, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202

    CAS  PubMed  Google Scholar 

  12. Wang Y, Jia D, Sun R, Zhu H, Zhou D (2008) Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ Sci Technol 42(2008):3254–3259

    CAS  PubMed  Google Scholar 

  13. Zhang X, Lin X, Ding H, He Y, Yang H, Chen Y, Chen X, Luo X (2019) Novel alginate particles decorated with nickel for enhancing ciprofloxacin removal: characterization and mechanism analysis. Ecotoxicol Environ Saf 169:392–401

    CAS  PubMed  Google Scholar 

  14. Springer V, Pecini E, Avena M (2016) Magnetic nickel ferrite nanoparticles for removal of dipyrone from aqueous solutions. J Environ Chem Eng 4:3882–3890

    CAS  Google Scholar 

  15. Afkhami A, RaziehMoosavi S, Madrakian T (2015) Magnetic nickel zinc ferrite nanocomposite as an efficient adsorbent for the removal of organic dyes from aqueous solutions. J Ind Eng Chem 21:920–924

    CAS  Google Scholar 

  16. Zhang L, Liu X, Guo X, Su M, Xu T, Song X (2011) Investigation on the degradation of brilliant green induced oxidation by NiFe2O4 under microwave irradiation. Chem Eng J 173:737–742

    CAS  Google Scholar 

  17. Rakshit S, Sarkar D, Elzinga EJ, Punamiyaa P, Datta R (2013) Mechanisms of ciprofloxacin removal by nano-sized magnetite. J Hazard Mater 246–247:221–226

    PubMed  Google Scholar 

  18. Dave PN, Gor A (2018) Natural polysaccharide-based hydrogels and nanomaterials: recent trends and their applications (Chapter 3). In: Hussain CM (ed) Handbook of nanomaterials for industrial applications micro and nano technologies. Elsevier, Amsterdam, pp 36–66

    Google Scholar 

  19. Babaladimath G, Vishalakshi B (2017) Silver nanoparticles embedded gum ghatti-graft-poly(N,N-dimethylacrylamide) biodegradable hydrogel: evaluation as matrix for controlled release of 2,4-dichlorophenoxyacetic acid. J Polym Res 24(10):155

    Google Scholar 

  20. Mittal H, Maity A, Ray SS (2015) Gum ghatti and poly(acrylamide-co-acrylic acid) based biodegradable hydrogel-evaluation of the flocculation and adsorption properties. Polym Degrad Stab 120:42–52

    CAS  Google Scholar 

  21. Kankeu EF, Mittal H, Mishra SB, Mishra AK (2015) Gum ghatti and acrylic acid based biodegradable hydrogels for the effective adsorption of cationic dyes. J Ind Eng Chem 22:171–178

    Google Scholar 

  22. Kashma S, Kumar V, Kaith BS, Som S, Pandey A, Kalia S, Swart HC (2015) Synthesis of biodegradable Gum ghatti based poly(methacrylic acid-aniline) conducting IPN hydrogel for controlled release of amoxicillin trihydrate. Ind Eng Chem Res 54:1982–1991

    Google Scholar 

  23. Singh G, Kapoor IPS, Dubey S, Siril PF, Yi JH, Zhao FQ, Hu RZ (2008) Effect of mixed ternary transition metal ferrites nanocrystallites on the thermal decomposition of ammonium perchlorates. Thermochim Acta 477:42–47

    CAS  Google Scholar 

  24. Kaith BS, Jindal R, Mittal H, Kumar K (2012) Synthesis, characterization and swelling behavior evaluation of Gum ghatti and acrylamide based hydrogel for selective absorption of saline from different petroleum fraction–saline emulsions. J Appl Polym Sci 124:2037–2047

    CAS  Google Scholar 

  25. Jindal R, Mittal H, Kumar K, Kaith BS (2012) Synthesis of crosslinked networks of Gum ghatti with different vinyl monomer mixtures and effect of ionic strength of various cations on its swelling behavior. Int J Polym Mater 61:99–115

    Google Scholar 

  26. Mittal H, Kaith BS, Jindal R (2010) Synthesis, characterization and swelling behaviour of poly(acrylamide-comethacrylic acid) grafted Gum ghatti based superabsorbent hydrogels. Adv Appl Sci Res 1:56–66

    CAS  Google Scholar 

  27. Mittal H, Kaith BS, Jindal R, Mishra SB, Mishra AK (2015) A comparative study on the effect of different reaction conditions on graft co-polymerization, swelling, and thermal properties of Gum ghatti-based hydrogels. J Therm Anal Calorim 119:131–144

    CAS  Google Scholar 

  28. Birks LS, Friedman H (1946) Particle size determination from X-ray line broadening. J Appl Phys 17:687–692

    CAS  Google Scholar 

  29. Kanagesan S, Hashim M, Tamilselvan S, Alitheen NB, Ismail I, Bahmanrokh G (2013) Cytotoxic effect of nanocrystalline MgFe2O4 particles for cancer cure. J Nanomater 2013:1–8

    Google Scholar 

  30. Markova I (2010) Infrared spectroscopy investigation of metallic nanoparticles based on copper, cobalt and nickel synthesized through borohydride reduction method (review). J Univ Chem Technol Metall 45:351–378

    Google Scholar 

  31. Chen M, Gong G, Zhou L, Zhang F (2017) Facile fabrication of a magnetic self-healing poly(vinyl alcohol) composite hydrogel. RSC Adv 7:21476–21483

    CAS  Google Scholar 

  32. Zhou Q, Lin X, Li B, Luo X (2014) Fluoride adsorption from aqueous solution by aluminum alginate particles prepared via electrostatic spinning device. Chem Eng J 256:306–315

    CAS  Google Scholar 

  33. El-Shafey ESI, Al-Lawati H, Al-Sumri AS (2012) Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J Environ Sci 24:1579–1586

    CAS  Google Scholar 

  34. Al-Heetimi DTA, Kadhum MAR (2017) Alkhazrajy OS Adsorption of ciprofloxacin hydrochloride from aqueous solution by Iraqi porcelinaite adsorbent. J Al-Nahrain Univ 17:41–49

    Google Scholar 

  35. Van Wieren EMV, Seymour MD, Peterson JW (2012) Interaction of fluoroquinolone antibiotic, ofloxacin with titanium oxide nanoparticles in water: adsorption and breakdown. Sci Total Environ 441:1–9

    PubMed  Google Scholar 

  36. Peng XM, Hu FP, Lam FLY, Wang YJ, Liu ZM, Dai HL (2015) Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon. J Colloid Interface Sci 460:349–360

    CAS  PubMed  Google Scholar 

  37. Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochim URSS 12:327–356

    Google Scholar 

  38. Yan H, Yang L, Yang Z, Yang H, Li A, Cheng R (2012) Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. J Hazard Mater 229–230:371–380

    PubMed  Google Scholar 

  39. Nasuha N, Hameed BH, Din ATM (2010) Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. J Hazard Mater 175:126–132

    CAS  PubMed  Google Scholar 

  40. He HJ, Xiang ZH, Chen XJ, Chen H, Huang H, Wen M (2017) Biosorption of Cd(II) from synthetic wastewater using dry biofilms from biotrickling filters. Int J Environ Sci Technol 15:1491–1500. https://doi.org/10.1007/s13762-017-1507-8

    Article  CAS  Google Scholar 

  41. Khademia Z, Ramavandib B, TaghiGhaneian M (2015) The behaviors and characteristics of a mesoporous activated carbon prepared from Tamarix hispida for Zn(II) adsorption from wastewater. J Environ Chem Eng 3:2057–2067

    Google Scholar 

  42. Ge H, Ma Z (2015) Microwave preparation of triethylenetetramine modified grapheme oxide/CS composite for adsorption of Cr(VI). Carbohydr Polym 131:280–287

    CAS  PubMed  Google Scholar 

  43. Wu S, Zhao X, Li Y, Zhao C, Du Q, Sun J, Wang Y, Peng X, Xia Y, Wang Z, Xia L (2013) Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate. Chem Eng J 230:389–395

    CAS  Google Scholar 

  44. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    CAS  Google Scholar 

  45. Huang L, Wang M, Shi C, Huang J, Zhang B (2014) Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation. Desalin Water Treat 52:2678

    CAS  Google Scholar 

  46. Danalıoglu ST, Bayazit SS, Kerkez O, Alhogbi BG, Salam MA (2017) Removal of ciprofloxacin from aqueous solution using humic acid- and levulinic acid- coated Fe3O4 nanoparticles. Chem Eng Res Des 123:259–267

    Google Scholar 

  47. Chen H, Gao B, Li H (2015) Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J Hazard Mater 282:201–207

    CAS  PubMed  Google Scholar 

  48. Fei Y, Yong L, Sheng H, Jie M (2016) Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J Colloid Interface Sci 484:196–204

    CAS  PubMed  Google Scholar 

  49. Inyang M, Dickenson E (2015) The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review. Chemosphere 134:232–240

    CAS  PubMed  Google Scholar 

  50. Wang X, Tao S, Xing B (2009) Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes. Environ Sci Technol 43:6214–6219

    CAS  PubMed  Google Scholar 

  51. Ji L, Chen W, Duan L, Zhu D (2009) Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol 43:2322–2327

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragnesh N. Dave.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gor, A.H., Dave, P.N. Adsorptive abatement of ciprofloxacin using NiFe2O4 nanoparticles incorporated into G. ghatti-cl-P(AAm) nanocomposites hydrogel: isotherm, kinetic, and thermodynamic studies. Polym. Bull. 77, 5589–5613 (2020). https://doi.org/10.1007/s00289-019-03032-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03032-2

Keywords

Navigation