Skip to main content

Advertisement

Log in

Investigating Kinetic, Thermodynamic, Isotherm, Antibacterial Activity and Paracetamol Removal from Aqueous Solution Using AgFe3O4 Nanocomposites Synthesized with Sumac Plant extract

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The abundance of pharmaceutically active compounds (PhACs) in aquatic environments has recently generated serious concerns as emerging environmental contaminants. In the present study, an eco-friendly catalyst AgFe3O4 nanocomposites (NCs) was synthesized for the removal of the medication paracetamol from an aqueous solution in the presence of NaBH4. To generate NCs in a simple, economical, and environmentally responsible manner, the Sumac (Rhus coriaria L.) plant extract was utilized as a natural stabilizer, reducing, and capping agent. The synthesized AgFe3O4 NCs have been verified by various techniques such as FTIR, XRD, SEM, EDS, and TEM. The crystal average size for NCs of about 8.9 nm was estimated from XRD results by the Scherrer and Williamson-Hall equations. The catalyst AgFe3O4 NCs (dose: 0.05 g and pHpzc 6.1) showed a high removal efficiency (96.76%) for aqueous solution paracetamol (0.001 g⋅mL–1) in acidic conditions between range (pH 3–11). The removal kinetics fitted a pseudo-second-order model well and demonstrated chemical adsorption plays a role in the rate-determining step of paracetamol removal. Based results of the intraparticle diffusion model, internal diffusion was not the main rate-determining step. The results of removal isotherm models showed that paracetamol removal is favorable on the monolayer of NCs of the Langmuir model (R2 = 0.9984). The Temkin and Dubinin-Radushkevich equations provided further support that the paracetamol removal process was dominated by a physisorption process and exothermic nature (BT = 2.0738 and E = 5.9559 kJ⋅mol−1). The negative and positive values for the calculated thermodynamic parameters ∆H° (− 0.039 kJ⋅mol−1⋅K−1) and ∆G°, respectively, showed an exothermic and nonspontaneous removal process as the temperature rises in the range of 291–313 K. In addition, the antibacterial effect of AgFe3O4 NCs against both gram-positive and gram-negative bacteria was tested, which revealed that NCs had antibacterial activity at different concentrations (0.001–0.02 g⋅mL–1).

Graphical Abstract

Schematic for the removal of paracetamol from the aqueous solutions at different temperatures and pHs in the present NaBH4, using green synthesized AgFe3O4 NCs of Sumac leaf extract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. I. Bavasso, C. Poggi, and E. Petrucci (2020). Enhanced degradation of paracetamol by combining UV with electrogenerated hydrogen peroxide and ozone. J. Water Process Eng. 34, 101102.

    Article  Google Scholar 

  2. M. Stuart, D. Lapworth, E. Crane, and A. Hart (2012). Review of risk from potential emerging contaminants in UK groundwater. Sci.Total Environ. 416, 1–21.

    Article  CAS  PubMed  Google Scholar 

  3. F. J. Chacón, M. L. Cayuela, and M. A. Sánchez-Monedero (2022). Paracetamol degradation pathways in soil after biochar addition. Environ. Pollut. 307, 119546–119548.

    Article  PubMed  Google Scholar 

  4. A. Mashayekh-Salehi, G. Moussavi, and K. Yaghmaeian (2017). Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant. Chem. Eng. J. 310, 157–169.

    Article  CAS  Google Scholar 

  5. A.-M. Abdel-Wahab, A.-S. Al-Shirbini, O. Mohamed, and O. Nasr (2017). Photocatalytic degradation of paracetamol over magnetic flower-like TiO2/Fe2O3 core-shell nanostructures. J. Photochem. Photobiol. A: Chem. 347, 186–198.

    Article  CAS  Google Scholar 

  6. Y. Shi, Y. Zhang, Y. Cui, J. Shi, X. Meng, J. Zhang, et al. (2019). Magnetite nanoparticles modified β-cyclodextrin PolymerCoupled with KMnO4 oxidation for adsorption and degradation of acetaminophen. Carbohydr. Polym. 222, 114972.

    Article  CAS  PubMed  Google Scholar 

  7. A. Pourtaheri and A. Nezamzadeh-Ejhieh (2015). Enhancement in photocatalytic activity of NiO by supporting onto an Iranian clinoptilolite nano-particles of aqueous solution of cefuroxime pharmaceutical capsule. Spectrochim Acta A Mol Biomol Spectrosc 137, 338–344.

    Article  CAS  PubMed  Google Scholar 

  8. S. O. Akpotu, E. O. Oseghe, O. S. Ayanda, A. A. Skelton, T. A. M. Msagati, and A. E. Ofomaja (2019). Photocatalysis and biodegradation of pharmaceuticals in wastewater: effect of abiotic and biotic factors. Clean Technol. and Environ. Policy 21, 1701–1721.

    Article  CAS  Google Scholar 

  9. S. Chopra and D. Kumar (2020). Characterization, optimization and kinetics study of acetaminophen degradation by Bacillus drentensis strain S1 and waste water degradation analysis. Bioresour. Bioprocess. 7, 9.

    Article  Google Scholar 

  10. Y. Yang, Y. S. Ok, K.-H. Kim, E. E. Kwon, and Y. F. Tsang (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 596–597, 303–320.

    Article  PubMed  Google Scholar 

  11. L. Yanyan, T. A. Kurniawan, M. Zhu, T. Ouyang, R. Avtar, M. H. Dzarfan Othman, et al. (2018). Removal of acetaminophen from synthetic wastewater in a fixed-bed column adsorption using low-cost coconut shell waste pretreated with NaOH, HNO3, ozone, and/or chitosan. J. Environ. Manag. 226, 365–376.

    Article  Google Scholar 

  12. K. Ratanapongleka and S. Punbut (2018). Removal of acetaminophen in water by laccase immobilized in barium alginate. Environ. Technol. 39, 336–345.

    Article  CAS  PubMed  Google Scholar 

  13. X.-L. Hu, Y.-F. Bao, J.-J. Hu, Y.-Y. Liu, and D.-Q. Yin (2017). Occurrence of 25 pharmaceuticals in Taihu Lake and their removal from two urban drinking water treatment plants and a constructed wetland. Environ. Sci. Pollut. Res. 24, 14889–14902.

    Article  CAS  Google Scholar 

  14. N. H. Tran and K.Y.-H. Gin (2017). Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine disrupters in a full-scale water reclamation plant. Sci. Total Environ. 599–600, 1503–1516.

    Article  PubMed  Google Scholar 

  15. A. L. Chiew, D. Reith, A. Pomerleau, A. Wong, K. Z. Isoardi, J. Soderstrom, et al. (2020). Updated guidelines for the management of paracetamol poisoning in Australia and New Zealand. Med. J. Aust. 212, 175–183.

    Article  PubMed  Google Scholar 

  16. L. A. Hernández-Carabalí, R. Sachdeva, J. B. Rojas-Trigos, E. Marín, and C. D. Garcia (2021). Monitoring the advanced oxidation of paracetamol using ZnO films via capillary electrophoresis. J. Water Process Eng. 41, 102051.

    Article  Google Scholar 

  17. F. Audino, J. M. Toro Santamaria, L. J. del Valle Mendoza, M. Graells, and M. Pérez-Moya (2019). Removal of paracetamol using effective advanced oxidation processes. Int. J.Environ. Res. Public Health 16, 505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D. Kanakaraju, B. D. Glass, and M. Oelgemöller (2018). Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J. Environ. Manag. 219, 189–207.

    Article  CAS  Google Scholar 

  19. G. Zhang, Y. Sun, C. Zhang, and Z. Yu (2017). Decomposition of acetaminophen in water by a gas phase dielectric barrier discharge plasma combined with TiO2-RGO nanocomposite: Mechanism and degradation pathway. J. Hazard. Mater. 323, 719–729.

    Article  CAS  PubMed  Google Scholar 

  20. S. Wang, Z. Zhou, R. Zhou, Z. Fang, and P. J. Cullen (2022). Highly synergistic effect for tetracycline degradation by coupling a transient spark gas–liquid discharge with TiO2 photocatalysis. Chem. Eng. J. 450, 138409.

    Article  CAS  Google Scholar 

  21. A. Thakur, N. Sharma, and A. Mann (2020). Removal of ofloxacin hydrochloride and paracetamol from aqueous solutions: Binary mixtures and competitive adsorption. Mater. Today 28, 1514–1519.

    Article  CAS  Google Scholar 

  22. I. Lung, M.-L. Soran, A. Stegarescu, O. Opris, S. Gutoiu, C. Leostean, et al. (2021). Evaluation of CNT-COOH/MnO2/Fe3O4 nanocomposite for ibuprofen and paracetamol removal from aqueous solutions. J. Hazard.Mater. 403, 123528.

    Article  CAS  PubMed  Google Scholar 

  23. H. Nourmoradi, K. F. Moghadam, A. Jafari, and B. Kamarehie (2018). Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus Brantii (Oak) acorn as a low-cost biosorbent. J. Environ. Chem. Eng. 6, 6807–6815.

    Article  CAS  Google Scholar 

  24. R. Golabiazar, M. R. Sabr, A. A. Ali, N. S. Qadr, R. S. Rahman, K. I. Othman, et al. (2022). Investigation and characterization of biosynthesized green adsorbent CuO NPs and CuO/Fe3O4 NCs using Adiantum C.V leaf for removal MO dye and Cr(VI) metal ions: thermodynamic, kinetic, and antibacterial studies. J. Iran. Chem. Soc. 19, 3135–53.

    Article  CAS  Google Scholar 

  25. M. Rezaei and A. Nezamzadeh-Ejhieha (2020). The ZnO-NiO nano-composite: A brief characterization, kinetic and thermodynamic study and study the Arrhenius model on the sulfasalazine photodegradation. Int. J. Hydrog. Energy 45, 24749–24764.

    Article  CAS  Google Scholar 

  26. R. Golabiazar, K. I. Othman, K. M. Khalid, D. H. Maruf, S. M. Aulla, and P. A. Yusif (2019). Green Synthesis, characterization, and investigation antibacterial activity of silver nanoparticles using pistacia atlantica leaf extract. BioNanoScience 9, 323–333.

    Article  Google Scholar 

  27. R. Golabiazar, G. S. Qadir, Z. A. Faqe, K. M. Khalid, K. I. Othman, N. F. Rasool, et al. (2022). Green biosynthesis of CdS NPs and CdS/Fe3O4 NCs by hawthorn plant extract for photodegradation of methyl orange dye and antibacterial applications. J. Clust. Sci. 33, 1223–1238.

    Article  CAS  Google Scholar 

  28. M. Nasrollahzadeh, M. Atarod, and S. M. Sajadi (2016). Green synthesis of the Cu/Fe3O4 nanoparticles using Morinda morindoides leaf aqueous extract: A highly efficient magnetically separable catalyst for the reduction of organic dyes in aqueous medium at room temperature. Appl. Surf. Sci. 364, 636–644.

    Article  CAS  Google Scholar 

  29. M. Maham, M. Nasrollahzadeh, S. M. Sajadi, and M. Nekoei (2017). Biosynthesis of Ag/reduced graphene oxide/Fe3O4 using Lotus garcinii leaf extract and its application as a recyclable nanocatalyst for the reduction of 4-nitrophenol and organic dyes. J. Colloid Interface Sci. 497, 33–42.

    Article  CAS  PubMed  Google Scholar 

  30. E. Vahid-Dastjerdi, Z. Sarmast, Z. Abdolazimi, A. Mahboubi, P. Amdjadi, and M. Kamalinejad (2014). Effect of Rhus coriaria L. water extract on five common oral bacteria and bacterial biofilm formation on orthodontic wire. Iran. J. Microbiol. 6, 269–75.

    PubMed  PubMed Central  Google Scholar 

  31. Z. Ben Barka, M. Tlili, H. Alimi, H. Ben Miled, K. Ben Rhouma, M. Sakly, et al. (2017). Protective effects of edible Rhus tripartita (Ucria) stem extract against ethanol-induced gastric ulcer in rats. J. Funct. Foods 30, 260–269.

    Article  CAS  Google Scholar 

  32. S. M. Nasar-Abbas and A. K. Halkman (2004). Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. Int. J. Food Microbiol. 97, 63–9.

    Article  CAS  PubMed  Google Scholar 

  33. T. Taskin, M. Dogan, B. N. Yilmaz, and I. Senkardes (2020). Phytochemical screening and evaluation of antioxidant, enzyme inhibition, anti-proliferative and calcium oxalate anti-crystallization activities of Micromeria fruticosa spp. brachycalyx and Rhus coriaria. Biocatal. Agric. Biotechnol. 27, 101670.

    Article  Google Scholar 

  34. S. Abdallah, I. Abu-Reidah, A. Mousa, and T. Abdel-Latif (2019). Rhus coriaria (sumac) extract reduces migration capacity of uterus cervix cancer cells. Revista Brasileira de Farmacognosia 29, 591–596.

    Article  CAS  Google Scholar 

  35. H. Alsamri, K. Athamneh, G. Pintus, A. H. Eid, and R. Iratni (2021). Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants 10, 73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. F. A. Ahmed, D. M. Baraka, M. Abdel-Mawgoud, H. S. Essawy, and H. F. Elbadawy (2021). Phenolic compounds, antioxidant and antimicrobial activities of some plants belonging to family Apiaceae. Benha J. Appl. Sci. 6, 299–308.

    Article  Google Scholar 

  37. M. Sajid, S. Bari, M. Saif Ur Rehman, M. Ashfaq, Y. Guoliang, and G. Mustafa (2022). Adsorption characteristics of paracetamol removal onto activated carbon prepared from Cannabis sativum Hemp. Alexandria Eng. J. 61, 7203–12.

    Article  Google Scholar 

  38. M. S. U. Rehman, M. Munir, M. Ashfaq, N. Rashid, M. F. Nazar, M. Danish, et al. (2013). Adsorption of brilliant green dye from aqueous solution onto red clay. Chem. Eng. J. 228, 54–62.

    Article  CAS  Google Scholar 

  39. A. Khorsand Zak, W. H. Abd Majid, M. E. Abrishami, and R. Yousefi (2011). X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13, 251–6.

    Article  CAS  Google Scholar 

  40. N. Omrani and A. Nezamzadeh-Ejhieh (2020). Photodegradation of sulfasalazine over Cu2O-BiVO4-WO3 nano-composite: Characterization and experimental design. Int. J. Hydrog. Energy 45, 19144–19162.

    Article  CAS  Google Scholar 

  41. Spaltro A, Pila MN, Colasurdo DD, Noseda Grau E, Román G, Simonetti S, et al. Removal of paracetamol from aqueous solution by activated carbon and silica. Experimental and computational study. Journal of Contaminant Hydrology 2021;236:103739.

  42. V. Bernal, A. Erto, L. Giraldo, and J. C. Moreno-Piraján (2017). Effect of solution pH on the adsorption of paracetamol on chemically modified activated carbons. Molecules 22, 1032.

    Article  PubMed  PubMed Central  Google Scholar 

  43. S. Kutluay, O. Baytar, and Ö. Şahin (2019). Equilibrium, kinetic and thermodynamic studies for dynamic adsorption of benzene in gas phase onto activated carbon produced from elaeagnus angustifolia seeds. J. Environ. Chem. Eng. 7, 102947.

    Article  CAS  Google Scholar 

  44. M. Guo, Q. Liu, S. Lu, R. Han, K. Fu, C. Song, et al. (2020). Synthesis of silanol-rich MCM-48 with mixed surfactants and their application in acetone adsorption: equilibrium, kinetic, and thermodynamic studies. Langmuir 36, 11528–11537.

    Article  CAS  PubMed  Google Scholar 

  45. C. Marchioni, F. Oliveira, C. Magalhães, and P. Luccas (2015). Assessment of cadmium and lead adsorption in organic and conventional coffee. Anal. Sci. 31, 165–172.

    Article  CAS  PubMed  Google Scholar 

  46. M. E. Mahmoud, M. F. Amira, S. M. Seleim, and A. K. Mohamed (2017). Adsorption isotherm models, kinetics study, and thermodynamic parameters of Ni(II) and Zn(II) removal from water using the LbL technique. J. Chem. Eng. Data 62, 839–850.

    Article  CAS  Google Scholar 

  47. I. Langmuir (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403.

    Article  CAS  Google Scholar 

  48. H. Freundlich (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie 57, 385–470.

    Article  CAS  Google Scholar 

  49. O. Dare Olatubosun, A. E. Okoronkwo, O. A. Odewole, H. Olumayowa Oluwasola, A. A. Balogun, and K. G. Akpomie (2021). Phenolic compounds removal from aqueous solution by composite of alumina-zirconia. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.1928103.

    Article  Google Scholar 

  50. F. Batool, J. Akbar, S. Iqbal, S. Noreen, and S. N. A. Bukhari (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorg. Chem. Appl. 2018, 3463724.

    Article  PubMed  PubMed Central  Google Scholar 

  51. M. Dubinin The equation of the characteristic curve of activated charcoal. Dokl Akad Nauk SSSR1947. pp. 327–9.

  52. I. Villaescusa, N. Fiol, J. Poch, A. Bianchi, and C. Bazzicalupi (2011). Mechanism of paracetamol removal by vegetable wastes: The contribution of π–π interactions, hydrogen bonding and hydrophobic effect. Desalination 270, 135–142.

    Article  CAS  Google Scholar 

  53. R. Baccar, M. Sarrà, J. Bouzid, M. Feki, and P. Blánquez (2012). Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem. Eng. J. 211–212, 310–317.

    Article  Google Scholar 

  54. X. Zheng, S. Feng, X. Wang, Z. Shi, Y. Mao, Q. Zhao, et al. (2019). MSNCs and MgO-MSNCs as drug delivery systems to control the adsorption kinetics and release rate of indomethacin. Asian J. Pharm. Sci. 14, 275–286.

    Article  PubMed  Google Scholar 

  55. K. G. Akpomie and J. Conradie (2021). Isotherm, kinetic, thermodynamics and reusability data on the adsorption of antidepressant onto silver nanoparticle-loaded biowaste. Data Brief 39, 107575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Q. Li, Q. Huang, X. Y. Pan, H. Yu, and Z. T. Zhao (2022). Adsorption behavior of Cr(VI) by biomass-based adsorbent functionalized with deep eutectic solvents (DESs). BMC Chem. 16, 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. C. P. Kumar, V. Sylas, N. Cyril, V. Ambily, C. Sunila, N. Sreekanth, et al. (2021). Acetaminophen removal using green synthesized iron nanoparticles with a fresh water microalga Planktochlorella nurekis. Nano-Struct. Nano-Objects 26, 100700.

    Article  Google Scholar 

  58. E.-A. Moacă, C.-V. Mihali, I.-G. Macaşoi, R. Racoviceanu, C. Şoica, C.-A. Dehelean, et al. (2019). Fe3O4@C matrix with tailorable adsorption capacities for paracetamol and acetylsalicylic acid: synthesis, characterization, and kinetic modeling. Molecules 24, 1727.

    Article  PubMed  PubMed Central  Google Scholar 

  59. N. Jallouli, K. Elghniji, H. Trabelsi, and M. Ksibi (2017). Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation. Arab. J. Chem. 10, S3640–S3645.

    Article  CAS  Google Scholar 

  60. J. Zia and U. Riaz (2020). Microwave-assisted degradation of paracetamol drug using polythiophene-sensitized Ag–Ag2O heterogeneous photocatalyst derived from plant extract. ACS Omega 5, 16386–16394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. A. Masudi, N. W. Che Jusoh, and P. Y. Liew (2020). Facile electrosynthesis of Fe3O4 nanoparticles mediated with sodium alginate for paracetamol degradation. IOP Conf. Series 808, 012023.

    Article  CAS  Google Scholar 

  62. R. S. Kumar, K. Govindan, S. Ramakrishnan, A. R. Kim, J.-S. Kim, and D. J. Yoo (2021). Fe3O4 nanorods decorated on polypyrrole/reduced graphene oxide for electrochemical detection of dopamine and photocatalytic degradation of acetaminophen. Appl. Surf. Sci. 556, 149765.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the lab facilities and technical assistance offered by the Beam Gostar Taban laboratory in Tehran, Iran, to complete this study. Thanks also to Dr. Rihan S. Abduljabar (Department of Phytochemistry, SRC, Soran University) for FTIR and the Department of Biology at Soran University for antimicrobial investigations.

Author information

Authors and Affiliations

Authors

Contributions

RG: designed, supervised, analysed the experiments data and wrote the original manuscript, ARA: analysed experimental data and revised the manuscript, SFM: analysed experimental data and revised the manuscript, ZAO: analysed experimental data and revised the manuscript, HAS: analysed experimental data and revised the manuscript, KMK: oversaw the experimental design, supervised data analysis and edited the manuscript. Finally, all authors have read and approved the final manuscript.

Corresponding author

Correspondence to Roonak Golabiazar.

Ethics declarations

Conflict of interest

There are no conflicts to declare in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golabiazar, R., Alee, A.R., Mala, S.F. et al. Investigating Kinetic, Thermodynamic, Isotherm, Antibacterial Activity and Paracetamol Removal from Aqueous Solution Using AgFe3O4 Nanocomposites Synthesized with Sumac Plant extract. J Clust Sci 34, 2547–2564 (2023). https://doi.org/10.1007/s10876-023-02406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02406-x

Keywords

Navigation