Skip to main content
Log in

Aromatic polyimides and copolyimides containing bulky t-butyltriphenylmethane units

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Triphenylmethane-based polyimides and copolyimides containing bulky t-butyl group (tBu) were obtained by one-step high temperature polycondensation of 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride with diamines of triphenylmethane (TPM) family. The polymers were obtained in quantitative yields with inherent viscosities of 0.45–0.80 dL/g. They exhibited high thermal stability with 5% weight loss above 500 °C and were cast in films with good mechanical properties capable of testing as gas separation membranes. All polyimides were readily soluble in polar aprotic solvents, and the solubility enhanced with the increase in tBu-group content. The amorphous, free-standing membranes were prepared from these polymers, and their permeabilities and selectivities to several gases were measured and discussed with respect to the structural differences in the polymers. It was shown that the presence of bulky tBu-units made the chain packing less efficient; free volume and d-spacing in the polyimides grew accordingly. As a consequence, the membranes with higher content of tBu-groups demonstrated improved permeabilities, showing 1.5–3.0 times higher permeability coefficients depending on the gas tested. The membranes’ separation performance was improved for CO2/CH4 gas pair in comparison with that of structurally similar polyimides, while it did not change for O2/N2 pair. Additionally, the mechanism of formation of triphenylmethane diamines in the reaction between aniline and benzaldehydes was investigated in order to optimize the monomer synthesis and to minimize possible side reactions. It was established that the secondary diamines, so-called aminals, were inevitable side products, particularly important in the condensation between aniline and tBu-benzaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimides materials: synthesis, physical properties and applications. Prog Polym Sci 37:907–974

    CAS  Google Scholar 

  2. Mittal V (2011) High performance polymers and engineering plastics. Wiley, New Jersey

    Google Scholar 

  3. Ree M (2006) High performance polyimides for applications in microelectronics and flat panel displays. Macromol Res 14:1–33

    CAS  Google Scholar 

  4. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663

    CAS  Google Scholar 

  5. Baker RW (2002) Future directions of membrane gas separation technology. Ind Chem Eng Res 41:1393–1411

    CAS  Google Scholar 

  6. Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47:2109–2121

    CAS  Google Scholar 

  7. Xiao YC, Low BT, Hosseini SS, Chung TS, Paul DR (2009) The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—a review. Prog Polym Sci 34:561–580

    CAS  Google Scholar 

  8. Lin H, Freeman BD (2005) Materials selection guidelines for membranes that remove CO2 from gas mixtures. J Mol Struct 739:57–74

    CAS  Google Scholar 

  9. Yao P, Gu J, Lei X, Sun W, Chen Y, Zhang Q (2015) Highly soluble and thermally stable copolyimides modified with trifluoromethyl and siloxane. J Appl Polym Sci 132:41713

    Google Scholar 

  10. Wilks BR, Chung WJ, Ludovice PJ, Rezac ME, Meakin P, Hill AJ (2006) Structural and free-volume analysis for alkyl-substituted palladium-catalyzed poly(norbornene): a combined experimental and Monte Carlo investigation. J Polym Sci Part B Polym Phys 44:215–233

    CAS  Google Scholar 

  11. Zhuo L, Kou K, Wang Y, Yao P, Wu G (2014) Synthesis of soluble and thermally stable polyimides with phthalimide as pendent group from pyridine–containing triamine. J Mater Sci 49:5141–5150

    CAS  Google Scholar 

  12. Yi L, Li C, Huang W, Yan D (2014) Soluble aromatic polyimides with high glass transition temperature from benzidine containing tert-butyl groups. J Polym Res 21:572

    Google Scholar 

  13. Kin SD, Lee S, Heo J, Kim SY, Chung IS (2013) Soluble polyimides with trifluoromethyl pendent groups. Polymer 54:5648–5654

    Google Scholar 

  14. Chen G, Pei X, Liu J, Fang X (2013) Synthesis and properties of transparent polyimides derived from trans- and cis-1,4-bis(3,4-dicarboxyphenoxy)cyclohexane dianhydrides. J Polym Res 20:159

    Google Scholar 

  15. Kim YH, Ahn SK, Kim HS, Kwon SK (2002) Synthesis and characterization of new organosoluble and gas-permeable polyimides from bulky substituted pyromellitic dianhydrides. J Polym Sci Part B Polym Chem 40:4288–4296

    CAS  Google Scholar 

  16. Liaw DJ, Hsu PN, Chen WH, Lin SL (2002) High glass transitions of new polyamides, polyimides, and poly(amide-imide)s containing a triphenylamine group: synthesis and characterization. Macromolecules 35:4669–4676

    CAS  Google Scholar 

  17. Qiu Z, Chen G, Zhang Q, Zhang S (2007) Synthesis and gas transport property of polyimide from 2,2-disubstituted biphenyltetracarboxylic dianhydrides (BPDA). Eur Polymer J 43:194–204

    CAS  Google Scholar 

  18. Kim HS, Kim YH, Ahn SK, Kwon SK (2003) Synthesis and characterization of highly soluble and oxygen permeable new polyimides bearing a noncoplanar twisted biphenyl unit containing tert-butylphenyl or trimethylsilyl phenyl groups. Macromolecules 36:2327–2332

    CAS  Google Scholar 

  19. Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185

    CAS  Google Scholar 

  20. Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    CAS  Google Scholar 

  21. Freeman BD (1999) Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32:375–380

    CAS  Google Scholar 

  22. Abetz V, Brinkmann T, Dijkstra M, Ebert K, Fritsch D, Ohlrogge K, Paul D, Peinemann KV, Pereira-Nunes S, Scharnagl N, Schossig M (2006) Developments in membrane research: from material via process design to industrial application. Adv Eng Mater 8:328–358

    CAS  Google Scholar 

  23. Nagel C, Gunther-Schade K, Fritsch D, Strunskus T, Faupel F (2002) Free volume and transport properties in highly selective polymer membranes. Macromolecules 35:2071–2077

    CAS  Google Scholar 

  24. Budd PM, McKeown NB, Fritsch D (2005) Free volume and intrinsic microporosity in polymers. J Mater Chem 15:1977–1986

    CAS  Google Scholar 

  25. Thran A, Kroll G, Faupel F (1999) Correlation between fractional free volume and diffusivity of gas molecules in glassy polymers. J Polym Sci Part B Polym Phys 37:3344–3358

    CAS  Google Scholar 

  26. Likhatchev D, Alexandrova L, Tlenkopatchev M, Vilar R, Vera-Graziano R (1995) Soluble aromatic polyimides and polyamides based on 4,4′-diaminotriphenylmethane. J Appl Polym Sci 57:37–44

    CAS  Google Scholar 

  27. Likhatchev D, Alexandrova L, Tlenkopatchev M, Martinez-Richa A, Vera-Graziano R (1996) One-step synthesis of aromatic polyimides based on 4,4′-diaminotriphenylmethane. J Appl Polym Sci 61:815–818

    CAS  Google Scholar 

  28. Aguilar-Lugo C, Perez-Martinez AL, Guzmán-Lucero D, Likhatchev D, Alexandrova L (2012) Polyimides based on 4,4′-diaminotriphenylmethane. In: Medard Abadie JM (ed) High performance polymers–polyimides based—from chemistry to applications, 1st edn. InTech, Rijeka, pp 3–14

    Google Scholar 

  29. Aguilar-Lugo C, Santiago-García JL, Loría-Bastarrachea MI, Guzmán-Lucero D, Alexandrova L, Aguilar-Vega M (2016) Synthesis, characterization, and structure-property relationships of aromatic polyimides containing 4,4′-diaminotriphenylmethane. J Polym Res 23:49

    Google Scholar 

  30. Guzmán-Lucero D, Palomeque-Santiago JF, Camacho-Zúñiga C, Ruiz-Treviño FA, Guzmán J, Galicia-Aguilar A, Aguilar-Lugo C (2015) Gas permeation properties of soluble aromatic polyimides based on 4-Fluoro-4,4′-diaminotriphenylmethane. Materials 8:1951–1965

    PubMed  PubMed Central  Google Scholar 

  31. Guzmán-Lucero D, Guzmán J, Likhatchev D, Martínez-Palou R (2005) Microwave-assisted synthesis of 4,4′-diaminotriphenylmethanes. Tetrahedron Lett 46:1119–1122

    Google Scholar 

  32. Saya I, Damaceanu MD, Constantin CP, Asandulesa M, Wolinska-Grabczyk A, Jankowski A (2018) Structure–promoted high performance properties of triphenylmethane-containing polyimides and copolyimides. Eur Polym J 108:554–569

    Google Scholar 

  33. Huang X, Pei X, Wang L, Mei M, Liu C, Wei C (2016) Design and synthesis of organosoluble and transparent polyimides containing bulky substituents and noncoplanar structures. J Appl Polym Sci 133(14):43266

    Google Scholar 

  34. Serberzeanu D, Carja ID, Bruma M, Ronova IA (2016) Correlation between physical properties and conformational rigidity of some aromatic polyimides having pendant phenolic groups. Struct Chem 27:973–981

    Google Scholar 

  35. Cheng SW, Huang TT, Tsai CL, Liou GS (2017) Highly transparent polyhydroxyimide/TiO2 and ZrO2 hybrid films with high glass transition temperature (Tg) and low coefficient of thermal expansion (CTE) for optoelectronic application. J Mater Chem C 5(33):8444–8453

    CAS  Google Scholar 

  36. Campbell KN, Sommers AH, Cambell BK (1944) The preparation of unsymmetrical secondary aliphatic amines. J Am Chem Soc 66(1):82–84

    CAS  Google Scholar 

  37. Ohashi S, Cassidy F, Huang S, Chiou K, Ishida H (2016) Synthesis and ring-opening polymerization of 2-substituted 1,3-benzoxazine: the first observation of the polymerization of oxazine ring-substituted benzoxazines. Polym Chem 7:7177–7184

    CAS  Google Scholar 

  38. Loría-Bastarrachea MI, Aguilar-Vega M (2013) Membranes from rigid block hexafluoro copolyaramides: effect of the block lengths on gas permeation and ideal separation factors. J Membr Sci 443:36–44

    Google Scholar 

  39. Ahmadi SJ, Hosseinpour M, Sadjadi S (2012) Non-catalytic condensation of aromatic aldehydes with aniline in high temperature water. Green Chem Lett Rev 5(3):403–407

    CAS  Google Scholar 

  40. Alinezhad H, Ardestani E, Noroozi S (2009) Synthesis of 4,4′-diaminotriphenylmethane derivatives using H3PW12O40 and HZSM5 zeolite under solvent-free conditions. J Iran Chem Soc 6(4):816–822

    CAS  Google Scholar 

  41. Cho BP, Yang T, Blankenship RL, Moody JD, Churchwell M, Beland FA, Culp SJ (2003) Synthesis and characterization of N-demethylated metabolites of malachite green and leucomalachite green. Chem Res Toxicol 16:285–294

    CAS  PubMed  Google Scholar 

  42. Le Goff T, Wood S (2008) Production of malachite green oxalate and leucomalachite green reference materials certified for purity. Anal Bioanal Chem 391:2035–2045

    CAS  PubMed  Google Scholar 

  43. Cui Y, Ni Y (2001) Preparation of N,N-diphenyl toluene. Synth Commun 31(2):257–261

    CAS  Google Scholar 

  44. Rowland GB, Zhang H, Rowland EB, Chennamadhavuni S, Wang Y, Antilla JC (2005) Brønsted acid-catalyzed imine amidation. J Am Chem Soc 127(45):15696–15697

    CAS  PubMed  Google Scholar 

  45. Godoy-Alcántar C, Yatsimirsky AK, Lehn JM (2005) Structure-stability correlations for imine formation in aqueous solution. J Phys Org Chem 18:979–985

    Google Scholar 

  46. Saggiomo V, Lüning U (2009) On the formation of imines in water—a comparison. Tetrahedron Lett 50:4663–4665

    CAS  Google Scholar 

  47. Ishida H, Wellinghoff ST, Baer E, Koenig JL (1980) Spectroscopic studies of poly(N,N′-bis(phenoxyphenyl)pyromellitimide). 1. Structures of the polyimide and three model compounds. Macromolecules 13:826–834

    CAS  Google Scholar 

  48. Sulub-Sulub R, Loría-Bastarrachea MI, Vázquez-Torres H, Santiago-García JL, Aguilar-Vega M (2018) Highly permeable polyimide membranes with a structural pyrene containing tert-butyl groups: synthesis, characterization and gas transport. J Membr Sci 563:134–141

    CAS  Google Scholar 

  49. Schmaljohann D, Häussler L, Pötschke P, Voit BI, Loontjens TJ (2000) Modification with alkyl chains and the influence on thermal and mechanical properties of aromatic hyperbranched polyesters. Macromol Chem Phys 201:49–57

    CAS  Google Scholar 

  50. Ragosta G, Abbate M, Musto P, Scarinzi G (2012) Effect of the chemical structure of aromatic polyimides on their thermal aging, relaxation behavior and mechanical properties. J Mater Sci 47:2637–2647

    CAS  Google Scholar 

  51. Liu SL, Wang R, Liu Y, Chng ML, Chung TS (2001) The physical and gas permeation properties of 6FDA-durene/2,6-diaminotoluene copolyimides. Polymer 42:8847–8855

    CAS  Google Scholar 

  52. Kothawade SS, Kulkarni MP, Kharul UK, Patil AS, Vernekar SP (2008) Synthesis, characterization, and gas permeability of aromatic polyimides containing pendant phenoxy group. J Appl Polym Sci 108:3881–3889

    CAS  Google Scholar 

  53. Zhang J, Kang H, Martin J, Zhang S, Thomas S, Merkel TC, Jin J (2016) The enhancement of chain rigidity and gas transport performance of polymers of intrinsic microporosity via intramolecular locking of the spiro-carbon. Chem Commun 52:6553–6556

    CAS  Google Scholar 

  54. Pixton MR, Paul DR (1994) Relationships between structure and transport properties for polymers with aromatic backbones. In: Paul DR, Yampolskii YP (eds) polymeric gas separation membranes, 1st edn. CRC Press, Boca Raton, pp 83–154

    Google Scholar 

  55. Ordonez MJC, Balkus KJ, Ferraris JP, Musselman IH (2010) Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J Membr Sci 361:28–37

    CAS  Google Scholar 

  56. Soleymanipour SF, Saeedi-Dehaghani AH, Pirouzfar V, Alihosseini V (2016) The morphology and gas-separation performance of membranes comprising multiwalled carbon nanotubes/polysulfone–Kapton. J Appl Polym Sci 133:43839–43847

    Google Scholar 

  57. Kim TH, Koros WJ, Husk GR, O’Brien KC (1988) Relationship between gas separation properties and chemical structure in a series of aromatic polyimides. J Membr Sci 37:45–62

    Google Scholar 

  58. Okamoto K, Tanaka K, Kita H, Ishida M, Kakimoto M, Imai Y (1992) Gas permeability and permselectivity of polyimides prepared from 4,4′-diaminotriphenylamine. Polym J 24:451–457

    CAS  Google Scholar 

  59. Zhang CL, Cao B, Li P (2018) Thermal oxidative crosslinking of phenolphthalein-based cardo polyimides with enhanced gas permeability and selectivity. J Membr Sci 546:90–99

    CAS  Google Scholar 

  60. Zhang C (2019) Synthesis and characterization of bis(phenyl)fluorine based cardo polyimide membranes for H2/CH4 separation. J Mater Sci 54:10560–10569

    CAS  Google Scholar 

  61. Zou L, Cao X, Zhang Q, Dodds M, Guo R, Gao H (2018) Friedel–Crafts A2 + B4 polycondensation toward regioselective linear polymer with rigid triphenylmethane backbone and its property as gas separation membrane. Macromolecules 51:6580–6586

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from DGAPA # IN107117 and by Spain’s MINECO (Projects MAT2016-76413-C2-R2, and MAT2016-76413-C2-R1). The authors thank G. Cedillo Valverde, M.A. Canseco Martinez, E. Hernandez Mecinas, E. R-Morales and A. Tejeda Cruz (all from IIM-UNAM) for different kinds of analyses and also would like to acknowledge Sara Rodriguez for the gas separation measurements. R.A.C.B. is grateful to CONACyT for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Larissa Alexandrova or Carla Aguilar-Lugo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Blanco, R.A., Rojas-Rodríguez, M., Hernández, A. et al. Aromatic polyimides and copolyimides containing bulky t-butyltriphenylmethane units. Polym. Bull. 77, 5103–5125 (2020). https://doi.org/10.1007/s00289-019-03003-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03003-7

Keywords

Navigation