Skip to main content

Advertisement

Log in

Highly Soluble Polyimides Containing Di-tert-butylbenzene and Dimethyl Groups with Good Gas Separation Properties and Optical Transparency

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A rigid aromatic diamine monomer containing di-tert-butylbenzene and dimethyl groups, 3,3′-dimethyl-4,4′-diaminophenyl-3″,5″-di-tert-butyltoluene, was successfully synthesized by a simple coupling reaction using 3,5-di-tert-butylbenzaldehyde and o-toluidine as starting materials. A series of novel polyimides (PI 3a–3c) with large pendant groups were prepared with the obtained diamine monomer and three different commercial aromatic dianhydrides (3,3′,4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride, and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride) by one-step high temperature polycondensation. The prepared polyimides exhibited high solubility and good membrane forming ability: they could be dissolved not only in some high boiling solvents such as DMF, NMP, DMAc, and m-Cresol at room temperature, but also in some low boiling solvents such as CHCl3, CH2Cl2, and THF. Their solubility in most solvents could exceed 10 wt%, and the flexible membranes could be obtained by casting their solutions. The prepared membranes exhibited good gas separation properties. The permeability coefficients of PI 3c for CO2 and O2 were up to 124.6 and 42.8 barrer, respectively, and the selectivity coefficients for CO2/CH4 and O2/N2 were 14.7 and 3.3, respectively. The membranes had light color and good optical transmission. Their optical transmittance at 450 nm wavelength was in the range of 67%–79%, and the cutoff wavelength was in the range of 310–348 nm. They also had good thermal properties with glass transition temperature (Tg) values in the range of 264–302 °C. In addition, these membranes possessed good mechanical properties with tensile strength ranging between 77.8–87.4 MPa, initial modulus ranging between 1.69–1.82 GPa, and elongation at break ranging between 4.8%–6.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mosanenzadeh, S. G.; Saadatnia, Z.; Shi, F.; Park, C. B.; Naguib, H. E. Structure to properties relations of BPDA and PMDA backbone hybrid diamine polyimide aerogels. Polymer2019, 176, 213–226.

    Article  CAS  Google Scholar 

  2. Jia, M.; Zhou, M.; Li, Y. J.; Lu, G. L.; Huang, X. Y. Construction of semi-fluorinated polyimides with perfluorocyclobutyl aryl ether-based side chains. Polym. Chem.2018, 9, 920–930.

    Article  CAS  Google Scholar 

  3. Qu, L.; Tang, L.; Bei, R.; Zhao, J.; Chi, Z.; Liu, S.; Chen, X.; Aldred, M. P.; Zhang, Y.; Xu, J. Flexible multifunctional aromatic polyimide film: highly efficient photoluminescence, resistive switching characteristic, and electroluminescence. ACS Appl. Mater. Interfaces2018, 10, 11430–11435.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, C. Y.; Chen, W. T.; Xu, C.; Zhao, X. Y.; Li, J. Fluorinated polyimide/POSS hybrid polymers with high solubility and low dielectric constant. Chinese J. Polym. Sci.2016, 34, 1363–1372.

    Article  CAS  Google Scholar 

  5. Wang C. Y.; Zhao, X. Y.; Li, G.; Jiang, J. M. High optical transparency and low dielectric constant of novel soluble polyimides containing fluorine and trifluoromethyl groups. Colloid Polym. Sci.2011, 289, 1617–1624.

    Article  CAS  Google Scholar 

  6. Liu, Y. W.; Tang, L. S.; Qu, L. J. Synthesis and properties of high performance functional polyimides containing rigid nonplanar conjugated fluorene moieties. Chinese J. Polym. Sci.2019, 37, 416–427.

    Article  CAS  Google Scholar 

  7. Yong, W. F.; Li, F. Y.; Chung, T. S.; Tong, Y. W. Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification. J. Mater. Chem. A2013, 13914–13925.

    Google Scholar 

  8. Li, N. B.; Wang, M.; Guo, L. X.; Lin, B. P.; Yang, H. Ionic liquid embedded polyimides with ultra-foldability, ultra-flexibility, ultra-processability and superior optical transparency. Polymer2018, 153, 538–547.

    Article  CAS  Google Scholar 

  9. Wu, Z. L.; Han, B. C.; Zhang, C. H.; Zhu, D. Y.; Gao, L. X.; Ding, M. X.; Yang, Z. H. Novel soluble and optically active polyimides containing axially asymmetric 9,9′-spirobifluorene units: synthesis, thermal, optical and chiral properties. Polymer2012, 53, 5706–5716.

    Article  CAS  Google Scholar 

  10. Genduso, G.; Wang, Y. G.; Ghanem, B. S.; Pinnau, I. Permeation, sorption, and diffusion of CO2-CH4 mixtures in polymers of intrinsic microporosity: the effect of intrachain rigidity on plasticization resistance. J. Membr. Sci.2019, 584, 100–109.

    Article  CAS  Google Scholar 

  11. Wang, C. Y.; Zhao, X. Y.; Li, G. Synthesis and properties of new fluorinated polyimides derived from an unsymmetrical and noncoplanar diamine. Chin. J. Chem.2012, 30, 2466–2472.

    Article  CAS  Google Scholar 

  12. Wang, C. Y.; Zhao, X. Y.; Li, G. New soluble polyimides with high optical transparency and light color containing pendant trifluoromethyl and methyl groups. Chin. J. Chem.2012, 30, 1555–1560.

    Article  CAS  Google Scholar 

  13. Ghanem, B. S.; McKeown, N. B.; Budd, P. M.; Selbie, J. D.; Fritsch, D. High-performance membranes from polyimides with intrinsic microporosity. Adv. Mater.2008, 20, 2766–2771.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, R.; Li, T. Y.; Zhou, H. B.; Huang, H. H.; Chen, Y. M. Biobased transparent polyimides with excellent solubility and mechanical properties using myo-inositol derived diamines. React. Funct. Polym.2018, 128, 91–96.

    Article  CAS  Google Scholar 

  15. Wang, C. Y.; Cao, S. J.; Chen, W. T.; Zhao, X. Y.; Li, J.; Ren, Q. A series of soluble polyimides containing sulfone and trifluoromethyl groups. J. Changzhou Univ. (Natural Science Edition)2018, 30, 7–12.

    Google Scholar 

  16. Wang, C.; Li, G.; Jiang, J. Novel soluble polyimide containing 4-tert-butyltoluene moiety: synthesis and characterization. Chin. J. Chem.2009, 27, 2255–2260.

    Article  CAS  Google Scholar 

  17. Gan, C. J.; Xu, X. C.; Jiang, X. W. Fabrication of 6FDA-HFBAPP polyimide asymmetric hollow fiber membranes and their CO2/CH4 separation properties. Chinese J. Polym. Sci.2019, 37, 815–826.

    Article  CAS  Google Scholar 

  18. Sanaeepur, H.; Ebadi,; Amooghin, A.; Bandehali, S.; Moghadassi, A.; Matsuura, T.; Bruggen, B. V. Polyimides in membrane gas separation: monomer’s molecular design and structural engineering. Prog. Polym. Sci.2019, 91, 80–125.

    Article  CAS  Google Scholar 

  19. Ghanem, B. S.; Swaidan, R.; Litwiller, E.; Pinnau, I. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation. Adv. Mater.2014, 26, 3688–3692.

    Article  CAS  PubMed  Google Scholar 

  20. Baker, R. W.; Lokhandwala, K. Natural gas processing with membranes: an overview. Ind. Eng. Chem. Res.2008, 47, 2109–2121.

    Article  CAS  Google Scholar 

  21. Sanders, D. F.; Smith, Z. P.; Guo, R.; Robeson, L. M.; Mcgrath, J. E.; Paul, D. R.; Freeman, B. D. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer2013, 54, 4729–4761.

    Article  CAS  Google Scholar 

  22. Wu, Z.; Yan, G.; Lu, J.; Zhang, G.; Yang, J. Thermal plastic and optical transparent polyimide derived from isophorone diamine and sulfhydryl compounds. Ind. Eng. Chem. Res.2019, 58, 6992–7000.

    Article  CAS  Google Scholar 

  23. Sulub-Sulub, R.; Loría-Bastarrachea, M. I.; Vázquez-Torres, H.; Santiago-García, J. L.; Aguilar-Vega, M. Highly permeable polyimide membranes with a structural pyrene containing tert-butyl groups: synthesis, characterization and gas transport. J. Membr. Sci.2018, 563, 134–141.

    Article  CAS  Google Scholar 

  24. Qiu, Z. M.; Chen, G.; Zhang, Q. Y.; Zhang, S. B. Synthesis and gas transport property of polyimide from 2,2′-disubstituted biphenyltetracarboxylic dianhydrides (BPDA). Eur. Polym. J.2007, 43, 194–204.

    Article  CAS  Google Scholar 

  25. Nikiforov, R.; Belov, N.; Zharov, A.; Konovalova, I.; Shklyaruk, B.; Yampolskii, Y. Gas permeation and diffusion in copolymers of tetrafluoroethylene and hexafluoropropylene: effect of annealing. J. Membr. Sci.2017, 540, 129–135.

    Article  CAS  Google Scholar 

  26. Bondi, A. van der Waals volumes and radii. J. Phys. Chem.1964, 68, 441–451.

    Article  CAS  Google Scholar 

  27. Park, J. Y.; Paul, D. R. Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method. J. Membr. Sci.1997, 125, 23–29.

    Article  CAS  Google Scholar 

  28. Yi, L.; Li, C.; Huang, W. Soluble polyimides from 4,4′-diaminodiphenyl ether with one or two tert-butyl pedant groups. Polymer2015, 80, 67–75.

    Article  CAS  Google Scholar 

  29. Zhao, Q.; Wang, X. Y.; Hu, Y. H. The application of highly soluble amine-terminated aromatic polyimides with pendent tert-butyl groups as a tougher for epoxy resin. Chinese J. Polym. Sci.2015, 33, 1359–1372.

    Article  CAS  Google Scholar 

  30. Ishii, J.; Takata, A.; Oami, Y.; Yokota, R.; Vladimirov, L.; Hasegawa, M. Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide membranes. Eur. Polym. J.2010, 46, 681–693.

    Article  CAS  Google Scholar 

  31. Qiu, Z. M.; Zhang, S. B. Synthesis and properties of organosoluble polyimides based on 2,2′-diphenoxy-4,4′,5,5′-biphenyltetracarboxylic dianhydride. Polymer2005, 46, 1693–1700.

    Article  CAS  Google Scholar 

  32. Zhang, Q. Y.; Li, S. H.; Li, W. M.; Zhang, S. B. Synthesis and properties of novel organosoluble polyimides derived from 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride and various aromatic diamines. Polymer2007, 48, 6246–6253.

    Article  CAS  Google Scholar 

  33. Yang, C. P.; Hsiao, S. H.; Chen, K. H. Organosoluble and optically transparent fluorine-containing polyimides based on 4,4′-bis(4-amino-2-trifluoromethylphenoxy)-3,3′,5,5′-tetramethylbiphenyl. Polymer2002, 43, 5095–5104.

    Article  CAS  Google Scholar 

  34. Wang, C. Y.; Chen, W. T.; Chen, Y. Y.; Zhao, X. Y.; Li, J.; Ren, Q. Synthesis and properties of new fluorene-based polyimides containing trifluoromethyl and isopropyl substituents. Mater. Chem. Phys.2014, 144, 553–559.

    Article  CAS  Google Scholar 

  35. Liu, J. T.; Chen, G. F.; Guo, J. C.; Mushtaq, N.; Fang, X. Z. Synthesis of high performance phenolphthalein-based cardo poly(ether ketone imide)s via aromatic nucleophilic substitution polymerization. Polymer2015, 70, 30–37.

    Article  CAS  Google Scholar 

  36. Mo, X.; Wang, C. Y.; Li, G.; Jiang, J. M. High optical transparency and low dielectric constant polyimides containing trifluoromethyl and cyclohexane groups. J. Macromol. Sci. Phys.2011, 51, 1370–1383.

    Article  CAS  Google Scholar 

  37. Yang, C. P.; Hsiao, S. H.; Wu, K. L. Organosoluble and light-colored fluorinated polyimides derived from 2,3-bis(4-amino-2-trifluoromethylphenoxy)naphthalene and aromatic dianhydrides. Polymer2003, 44, 7067–7078.

    Article  CAS  Google Scholar 

  38. Yang, C. P.; Hsiao, S. H.; Hsu, M. F. Organosoluble and light-colored fluorinated polyimides from 4,4′-bis(4-amino-2-trifluoromethylphenoxy) biphenyl and aromatic dianhydrides. Polym. Chem.2002, 40, 524–534.

    Article  CAS  Google Scholar 

  39. Liu, H.; Zhai, L.; Bai, L.; He, M. H.; Wang, C. G.; Mo, S.; Fan, L. Synthesis and characterization of optically transparent semi-aromatic polyimide films with low fluorine content. Polymer2019, 163, 106–114.

    Article  CAS  Google Scholar 

  40. Wang, C.; Cao, S.; Chen, W.; Xu, C.; Zhao, X.; Li, J.; Ren, Q. Synthesis and properties of fluorinated polyimides with multi-bulky pendant groups. RSC Adv.2017, 7, 26420–26427.

    Article  CAS  Google Scholar 

  41. Belov, N.; Chatterjee, R.; Nikiforov, R.; Ryzhikh, V.; Bisoi, S.; Kumar, A. G.; Banerjee, S.; Yampolskii, Y. New poly(ether imide)s with pendant di-tert-butyl groups: synthesis, characterization and gas transport properties. Sep. Purif. Technol.2019, 217, 183–194.

    Article  CAS  Google Scholar 

  42. Dhara, M. G.; Banerjee, S. Fluorinated high-performance polymers: poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Polym. Sci.2010, 35, 1022–1077.

    Article  CAS  Google Scholar 

  43. Barikani, M.; Mehdipour-Ataei, S. Synthesis, characterization, and thermal properties of novel arylene sulfone ether polyimides and polyamides. J. Polym. Sci. Part A: Polym. Chem.2000, 88, 1487–1492.

    Article  Google Scholar 

  44. Wang, C.; Chen, W.; Chen, Y.; Zhao, X.; Li, J.; Ren, Q. New fluorinated poly(ether sulfone imide)s with high thermal stability and low dielectric constant. Mater. Chem. Phys.2014, 133, 773–778.

    Article  CAS  Google Scholar 

  45. Tian, Z. K.; Cao, B.; Li, P. Effects of sub-Tg cross-linking of triptycene-based polyimides on gas permeation, plasticization resistance and physical aging properties. J. Membr. Sci.2018, 560, 87–96.

    Article  CAS  Google Scholar 

  46. Zhang, C.; Li, P.; Cao, B. Effects of the side groups of the spirobichroman-based diamines on the chain packing and gas separation properties of the polyimides. J. Membr. Sci.2017, 530, 176–184.

    Article  CAS  Google Scholar 

  47. Calle, M.; Lozano, A. E.; Abajo, J. D.; Campa, J. G. D.; Álvarez, C., Design of gas separation membranes derived of rigid aromatic polyimides. 1. Polymers from diamines containing di-tert-butyl side groups. J. Membr. Sci2010, 365, 145–153.

    Article  CAS  Google Scholar 

  48. Zhang, C. L.; Li, P.; Cao, B. Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance. J. Membr. Sci.2017, 528, 206–216.

    Article  CAS  Google Scholar 

  49. Jiang, X. W.; Xiao, X.; Xu, X. C. Effects of non-TR-able codiamines and rearrangement conditions on the chain packing and gas separation performance of thermally rearranged poly(benzoxazole-co-imide) membranes. J. Membr. Sci.2018, 564, 605–616.

    Article  CAS  Google Scholar 

  50. Duthie, X.; Kentish, S.; Powell, C.; Nagai, K.; Qiao, G.; Stevens, G. Operating temperature effects on the plasticization of polyimide gas separation membranes. J. Membr. Sci.2007, 294, 40–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Key Research Project of Jiangsu Province (No. BE2017645), Scientific Research and Innovation Project for Graduate Students in Jiangsu Province (No. KYCX19-1757), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen-Yi Wang or Xiao-Yan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CY., Jiang, CR., Yu, B. et al. Highly Soluble Polyimides Containing Di-tert-butylbenzene and Dimethyl Groups with Good Gas Separation Properties and Optical Transparency. Chin J Polym Sci 38, 759–768 (2020). https://doi.org/10.1007/s10118-020-2377-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2377-y

Keywords

Navigation