Skip to main content
Log in

Synthesis of block copolymer including polyepichlorohydrin and polyethylene glycol by “click” chemistry: evaluation of primary parameters of copolymerization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Synthesis of poly(epichlorohydrin-b-ethylene glycol) block copolymers was obtained via “click” chemistry of polyepichlorohydrin propargyl (PECH-propargyl) and polyethylene glycol azido (PEG-N3) with different molecular weights. For this purpose, polyethylene glycol bromine (PEG-Br) was obtained by reaction of PEGs with various molecular weights and 3-bromopropionyl chloride. PEG-N3 was synthesized by using PEG-Br with sodium azide (NaN3). PECH-propargyl was synthesized using polyepichlorohydrin and propargyl chloride. By reacting PECH-propargyl and PEG-N3, the block copolymers were obtained. The primary parameters, for example time, amount of solvent, and concentration, were evaluated. The products were characterized by FT-IR, 1H-NMR, GPC, TGA, SEM, and fractional precipitation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Edit 40:2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3c2004:AID-ANIE2004%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  2. Hein CD, Liu XM, Wang D (2008) Click chemistry, a powerful tool for pharmaceutical sciences. Pharm Res 25:2216–2230. https://doi.org/10.1007/s11095-008-9616-1

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36:1249–1262. https://doi.org/10.1039/B613014N

    Article  PubMed  CAS  Google Scholar 

  4. Zhu DY, Cao GS, Qiu WL, Rong MZ, Zhang MQ (2015) Self-healing polyvinyl chloride (PVC) based on microencapsulated nucleophilic thiol-click chemistry. Polymer 69:1–9. https://doi.org/10.1016/j.polymer.2015.05.052

    Article  CAS  Google Scholar 

  5. Binder WH, Sachsenhofer R (2007) ‘Click’ chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54. https://doi.org/10.1002/marc.200600625

    Article  CAS  Google Scholar 

  6. Xu J, Ye J, Liu SY (2007) Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior. Macromolecules 40:9103–9110. https://doi.org/10.1021/ma0717183

    Article  CAS  Google Scholar 

  7. Bo Yan, Zhou H, Lai J, Wang Z, Luo C, Liu H, Jin X, Ma A, Chen W (2019) Pluronic F127 gels fabricated by thiol-ene click chemistry: preparation, gelation dynamics, swelling behaviors and mechanical properties. Polym Bull. https://doi.org/10.1007/s00289-019-02696-0

    Article  Google Scholar 

  8. Tunca U (2013) Triple click reaction strategy for macromolecular diversity. Macromol Rapid Commun 34:38–46. https://doi.org/10.1002/marc.201200656

    Article  PubMed  CAS  Google Scholar 

  9. Altıntas A, Tunca U (2011) Synthesis of terpolymers by click reactions. Chem Asian J 6:2584–2591. https://doi.org/10.1002/asia.201100138

    Article  PubMed  CAS  Google Scholar 

  10. Parrish B, Breitenkamp RB, Emrick T (2005) PEG- and peptide-grafted aliphatic polyesters by click chemistry. J Am Chem Soc 127:7404–7410. https://doi.org/10.1021/ja050310n

    Article  PubMed  CAS  Google Scholar 

  11. Şanal T, Koçak İ, Hazer B (2017) Synthesis of comb-type amphiphilic graft copolymers derived from chlorinated poly(e-caprolactone) via click reaction. Polym Bull 74:977–995. https://doi.org/10.1007/s00289-016-1757-5

    Article  CAS  Google Scholar 

  12. Xi W, Scott TF, Kloxin CJ, Bowman CN (2014) Click chemistry in materials science. Adv Funct Mater 24:2572–2590. https://doi.org/10.1002/adfm.201302847

    Article  CAS  Google Scholar 

  13. Öztürk T, Meyvacı E (2017) Synthesis and characterization poly(ɛ-caprolactone-b-ethylene glycol-b-ɛ-caprolactone) ABA type block copolymers via “click” chemistry and ring-opening polymerization. J Macromol Sci Part A Pure Appl Chem 54:575–581. https://doi.org/10.1080/10601325.2017.1309251

    Article  CAS  Google Scholar 

  14. Al-Kaabi K, van Reene AJ (2008) Controlled radical polymerization of poly(methyl methacrylate-g-epichlorohydrin) using N,N-dithiocarbamate-mediated iniferters. J Appl Polym Sci 108:2528–2534. https://doi.org/10.1002/app.27267

    Article  CAS  Google Scholar 

  15. Cho BS, Noh ST (2013) Synthesis and thermal properties of ferrocene-modified poly(epichlorohydrin-co-2-(methoxymethyl)oxirane). Macromol Res 21:221–227. https://doi.org/10.1007/s13233-013-1074-x

    Article  CAS  Google Scholar 

  16. Tang TT, Fan XS, Jin Y, Wang GW (2014) Synthesis and characterization of graft copolymers with poly(epichlorohydrin-co-ethylene oxide) as backbone by combination of ring-opening polymerization with living anionic polymerization. Polymer 55:3680–3687. https://doi.org/10.1016/j.polymer.2014.05.066

    Article  CAS  Google Scholar 

  17. Lee KJ, Park JT, Koh JH, Min BR, Kim JH (2009) Graft polymerization of poly(epichlorohydrin-g-poly((oxyethylene) methacrylate)) using ATRP and its polymer electrolyte with KI. Ionics 15:163–167. https://doi.org/10.1007/s11581-008-0245-9

    Article  CAS  Google Scholar 

  18. Öztürk T, Kayğın O, Göktaş M, Hazer B (2016) Synthesis and characterization of graft copolymers based on polyepichlorohydrin via reversible addition-fragmentation chain transfer polymerization. J Macromol Sci Part A Pure Appl Chem 53:362–367. https://doi.org/10.1080/10601325.2016.1166002

    Article  CAS  Google Scholar 

  19. Göktaş M, Öztürk T, Atalar MN, Tekeş AT, Hazer B (2014) One-step synthesis of triblock copolymers via simultaneous reversible-addition fragmentation chain transfer (RAFT) and ring-opening polymerization using a novel difunctional macro-RAFT agent based on polyethylene glycol. J Macromol Sci Part A Pure Appl Chem 51:854–863. https://doi.org/10.1080/10601325.2014.953366

    Article  CAS  Google Scholar 

  20. Öztürk T, Yavuz M, Göktaş M, Hazer B (2016) One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization. Polym Bull 73:1497–1513. https://doi.org/10.1007/s00289-015-1558-2

    Article  CAS  Google Scholar 

  21. Öztürk T, Göktaş M, Savaş B, Işıklar M, Atalar MN, Hazer B (2014) Synthesis and characterization of poly(vinylchloride-graft-2-vinylpyridine) graft copolymers using a novel macroinitiator by reversible addition-fragmentation chain transfer polymerization. e-Polymers 14:27–34. https://doi.org/10.1515/epoly-2013-0011

    Article  CAS  Google Scholar 

  22. Öztürk T, Göktaş M, Hazer B (2010) One-step synthesis of triarm block copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization. J Appl Polym Sci 117:1638–1645. https://doi.org/10.1002/app.32031

    Article  CAS  Google Scholar 

  23. Noshay A, Mcgrath JE (1977) Block copolymers: overview and critical survey. Academic Press, New York

    Google Scholar 

  24. Ruzette AV, Leibler L (2005) Block copolymers in tomorrow’s plastics. Nat Mater 4:19–31. https://doi.org/10.1038/nmat1295

    Article  PubMed  CAS  Google Scholar 

  25. Nguyen SH, Berek D, Capek I, Chiantore O (2000) Polystyrene-graft-poly(ethylene oxide) copolymers prepared by macromonomer technique in dispersion. I. Liquid chromatographic separation of product mixtures. J Polym Sci Part A Polym Chem b38:2284–2291. https://doi.org/10.1002/(SICI)1099-0518(20000615)38:12%3c2284:AID-POLA180%3e3.0.CO;2-E

    Article  Google Scholar 

  26. Öztürk T, Kılıçlıoğlu A, Savaş B, Hazer B (2018) Synthesis and characterization poly(ɛ-caprolactone-co-ethylene glycol) heteroarm star-type amphiphilic copolymers by “click” chemistry and ring-opening polymerization. J Macromol Sci Part A Pure Appl Chem 55:588–594. https://doi.org/10.1080/10601325.2018.1481344

    Article  CAS  Google Scholar 

  27. Çatıker E, Öztürk T, Atakay M, Salih B (2019) Synthesis and characterization of novel aba type poly(ester-ether) triblock copolymers. J Polym Res 26:123. https://doi.org/10.1007/s10965-019-1778-5

    Article  CAS  Google Scholar 

  28. Şanal T, Oruç O, Öztürk T, Hazer B (2015) Synthesis of pH- and thermo-responsive poly(ɛ-caprolactone-b-4-vinyl benzyl-g-dimethyl amino ethyl methacrylate) brush type graft copolymers via RAFT polymerization. J Polym Res 22:1–12. https://doi.org/10.1080/10601325.2014.953366

    Article  CAS  Google Scholar 

  29. Hasegawa N, Usuki A (2003) Arranged microdomain structure induced by clay silicate layers in block copolymer-clay nanocomposites. Polym Bull 51:77–83. https://doi.org/10.1007/~00289-003-0196-2

    Article  CAS  Google Scholar 

  30. Johnson JA, Lu YY, Burts AO, Xia Y, Durrell AC, Tirrell DA, Grubbs RH (2010) Drug-loaded, bivalent-bottle-brush polymers by graft-through ROMP. Macromolecules 43:10326–10335. https://doi.org/10.1021/ma1021506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Johnson JA, Lu YY, Burts AO, Lim Y, Finn MG, Koberstein JT, Turro NJ, Tirrell DA, Grubbs RH (2011) Core-clickable peg-branch-azide bivalent-bottle-brush polymers by ROMP: grafting-through and clicking-to. J Am Chem Soc 133:559–566. https://doi.org/10.1021/ja108441d

    Article  PubMed  CAS  Google Scholar 

  32. Zhang M, Estournès C, Bietsch W, Müller AHE (2004) Superparamagnetic hybrid nanocylinders. Adv Funct Mater 14:871–882. https://doi.org/10.1002/adfm.200400064

    Article  CAS  Google Scholar 

  33. Djalali R, Li SY, Schmidt M (2002) Amphipolar core–shell cylindrical brushes as templates for the formation of gold clusters and nanowires. Macromolecules 35:4282–4288. https://doi.org/10.1021/ma0113733

    Article  CAS  Google Scholar 

  34. Zhang M, Drechsler M, Muller AHE (2004) Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core–shell cylindrical polymer brushes. Chem Mater 16:537–543. https://doi.org/10.1021/cm034760v

    Article  CAS  Google Scholar 

  35. Li C, Gunari N, Fischer K, Janshoff A, Schmidt M (2004) New perspectives for the design of molecular actuators: thermally induced collapse of single macromolecules from cylindrical brushes to spheres. Angew Chem Int Ed 43:1101–1104. https://doi.org/10.1002/anie.200352845

    Article  CAS  Google Scholar 

  36. Huang K, Rzayev J (2009) Well-defined organic nanotubes from multicomponent bottlebrush copolymers. J Am Chem Soc 131:6880–6885. https://doi.org/10.1021/ja901936g

    Article  PubMed  CAS  Google Scholar 

  37. Cheng C, Qi K, Khoshdel E, Wooley KL (2006) Tandem synthesis of core–shell brush copolymers and their transformation to peripherally cross-linked and hollowed nanostructures. J Am Chem Soc 128:6808–6809. https://doi.org/10.1021/ja061892r

    Article  PubMed  CAS  Google Scholar 

  38. Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J (2006) Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci 31:1068–1132. https://doi.org/10.1016/j.progpolymsci.2006.07.002

    Article  CAS  Google Scholar 

  39. Deffieux A, Schappacher M (1999) Synthesis and characterization of star and comb polystyrenes using isometric poly(chloroethyl vinyl ether) oligomers as reactive backbone. Macromolecules 32:1797–1802. https://doi.org/10.1021/ma981612v

    Article  CAS  Google Scholar 

  40. Velichkova RS, Christova DC (1995) Amphiphilic polymers from macromonomers and telechelics. Prog Polym Sci 20:819–887. https://doi.org/10.1016/0079-6700(95)00004-Y

    Article  CAS  Google Scholar 

  41. Gacal B, Durmaz H, Tasdelen MA, Hizal G, Tunca U, Yagci Y, Demirel AL (2006) Anthracene-maleimide-based Diels–Alder “click chemistry” as a novel route to graft copolymers. Macromolecules 39:5330–5336. https://doi.org/10.1021/ma060690c

    Article  CAS  Google Scholar 

  42. Pispas S, Hadjichristidis N (2003) Aggregation behavior of poly(butadiene-b-ethylene oxide) block copolymers in dilute aqueous solutions: effect of concentration, temperature, ionic strength, and type of surfactant. Langmuir 19:48–54. https://doi.org/10.1021/la020561z

    Article  CAS  Google Scholar 

  43. Öztürk T, Hazer B (2010) Synthesis and characterization of a novel macromonomer initiator for reversible addition fragmentation chain transfer (RAFT). Evaluation of the polymerization kinetics and gelation behaviors. J Polym Sci Part A Polym Chem 47:265–272. https://doi.org/10.1080/10601320903527095

    Article  CAS  Google Scholar 

  44. Öztürk T, Göktaş M, Hazer B (2011) Synthesis and characterization of poly(methyl methacrylate-block-ethylene glycol-block-methyl methacrylate) block copolymers by reversible addition-fragmentation chain transfer polymerization. J Macromol Sci Part A Pure Appl Chem 48:65–72. https://doi.org/10.1080/10601325.2011.528310

    Article  CAS  Google Scholar 

  45. Asan N, Öztürk T (2017) Synthesis and characterization of poly(vinyl chloride-graft-ethylene glycol) graft copolymers by “click” chemistry. Hacet J Biol Chem 45:35–42. https://doi.org/10.15671/HJBC.2017.139

    Article  Google Scholar 

  46. Silant’eva VG, Filatova NA, Mizerovskii LN (1996) Synthesis and study of block copolymers based on caprolactam and polyethylene glycol. Fibre Chem 28:278–281. https://doi.org/10.1007/BF01060147

    Article  Google Scholar 

  47. Hazer B (2010) Amphiphilic poly(3-hydroxy alkanoate)s: potential candidates for medical applications. Int J Polym Sci 2010:423460. https://doi.org/10.1155/2010/423460

    Article  CAS  Google Scholar 

  48. Erciyes AT, Erim M, Hazer B, Yağcı Y (1992) Synthesis of polyacrylamide flocculants with poly(ethylene glycol) segments by redox polymerization. Angew Macromol Chem 200:163–171. https://doi.org/10.1002/apmc.1992.052000113

    Article  CAS  Google Scholar 

  49. Öztürk T, Cavicchi CA (2018) Synthesis and characterization of poly(epichlorohydrin-g-ε-caprolactone) graft copolymers by “click” chemistry. J Polym Mater 35:209–220. https://doi.org/10.32381/JPM.2018.35.02.6

    Article  Google Scholar 

  50. Çatıker E, Meyvacı E, Atakay M, Salih B, Öztürk T (2019) Synthesis and characterization of amphiphilic triblock copolymers including β-alanine/α-methyl-β-alanine and ethylene glycol by “click” chemistry. Polym Bull 76:2113–2128. https://doi.org/10.1007/s00289-018-2561-1

    Article  CAS  Google Scholar 

  51. Öztürk T, Meyvacı E, Bektaş H, Menteşe E (2019) Synthesis and characterization of ring-type and branched polymers including polyethylene glycols by “click” chemistry. SN Appl Sci 1:343. https://doi.org/10.1007/s42452-019-0360-4

    Article  CAS  Google Scholar 

  52. Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H (2016) Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation. Chem Rev 116:2170–2243. https://doi.org/10.1021/acs.chemrev.5b00441

    Article  PubMed  CAS  Google Scholar 

  53. Danner AK, Leibig D, Vogt LM, Frey H (2019) Monomer-activated copolymerization of ethylene oxide and epichlorohydrin: in situ kinetics evidences tapered block copolymer formation. Chin J Polym Sci 37:912–918. https://doi.org/10.1007/s10118-019-2296-y

    Article  CAS  Google Scholar 

  54. Liu J, Gan Z (2014) Hydrophilic block azidation of PCL-b-PEO block copolymers from epichlorohydrin. Macromol Biosci 14:699–708. https://doi.org/10.1002/mabi.201300488

    Article  PubMed  CAS  Google Scholar 

  55. Öztürk T, Atalar MN, Göktaş M, Hazer B (2013) One-step synthesis of block-graft copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization using a novel macroinitiator. J Polym Sci Part A Polym Chem 51:2651–2659. https://doi.org/10.1002/pola.26654

    Article  CAS  Google Scholar 

  56. Hazer B, Erdem B, Lenz RW (1994) Styrene polymerization with some new macro or macromonomeric azo initiators having PEG units. J Polym Sci Part A Polym Chem 32:1739–1746. https://doi.org/10.1002/pola.1994.080320916

    Article  CAS  Google Scholar 

  57. Macit H, Hazer B (2004) Synthesis of PMMA–PTHF–PMMA and PMMA–PTHF–PST linear and star block copolymers. J Appl Polym Sci 93:219–226. https://doi.org/10.1002/app.20455

    Article  CAS  Google Scholar 

Download references

Funding

The work was funded by Giresun University Scientific Research Fund (FEN-BAP-A-140316-48).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temel Öztürk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, T., Yörümez, C. Synthesis of block copolymer including polyepichlorohydrin and polyethylene glycol by “click” chemistry: evaluation of primary parameters of copolymerization. Polym. Bull. 77, 4773–4788 (2020). https://doi.org/10.1007/s00289-019-02989-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02989-4

Keywords

Navigation