Skip to main content
Log in

Synthesis and thermal properties of ferrocene-modified poly(epichlorohydrin-co-2-(methoxymethyl)oxirane)

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

2-(Methoxymethyl)oxirane (MOMO) was used as a co-monomer for ring-opening polymerization, and four different samples of poly(epichlorohydrin-co-2-(methoxymethyl)oxirane) (poly(ECH-co-MOMO)) were synthesized by cationic ring opening copolymerization in the presence of BF3-etherate and 1,4-butandiol as an initiator system. Further, ferrocene modified copolymers were obtained by a substitution reaction of ferrocene methanol with the epichlorohydrin (ECH) unit in poly (ECH-co-MOMO) under mild conditions. Structural analysis of all products was performed using Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR). The thermal behaviors of the poly(ECH-co-MOMO) and ferrocene-modified poly(ECH-co-MOMO) were compared using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The glass transition temperatures (T g ) of PECH and PMOMO were −47 and −61 °C, respectively. As the contents of PMOMO increased, the T g of the poly(ECH-co-MOMO)s were decreased and the onset of thermal decomposition shifted to a higher temperature. The decomposition temperature of poly(ECH-co-MOMO) was higher than that of the ferrocene-modified poly(ECH-co-MOMO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Millan, G. Martinez, C. Mijangos, and J. M. Gomez-Elvira, Makromol. Chem. Makromol. Symp., 29, 185 (1989).

    Article  CAS  Google Scholar 

  2. D. C. Sherrington and P. Hodge, Synthesis and Separations Using Functional Polymers, Wiley, Chichester, 1988.

    Google Scholar 

  3. T. Iizawa, T. Nishikubo, M. Ichikawa, and Y. Sugawara, J. Polym. Sci. Part A: Polym. Chem., 23, 1893 (1985).

    Article  CAS  Google Scholar 

  4. M. Perez, J. C. Ronda, J. A. Reina, and A. Serra, Polymer, 42, 1 (2001).

    Article  CAS  Google Scholar 

  5. T. Nishikubo, T. Iizawqa, Y. Mizutami, and M. Okawara, Makromol. Chem. Rapid Commun., 3, 617 (1982).

    Article  CAS  Google Scholar 

  6. T. Nishikubo, T. Iizawqa, Y. Sukawara, and T. J. Shimokawa, J. Polym. Sci. Part A: Polym. Chem., 24, 1097 (1986).

    Article  CAS  Google Scholar 

  7. J. C. Lee, M. H. Litt, and C. E. Rogers, J. Polym. Sci. Part B: Polym. Phys., 36, 75 (1998).

    Article  CAS  Google Scholar 

  8. E. H. Sohn, J. E. Kim, B. G. Kim, J. I. Kang, J. S. Chung, J. Y. Ahn, J. Y Yoon, and J. C. Lee, Colloid. Surf. B: Biointerfaces, 77, 191 (2010).

    Article  CAS  Google Scholar 

  9. H. Kang, E. H. Sohn, D. S. Kang, and J. C. Lee, Liq. Cryst., 36, 855 (2009).

    Article  CAS  Google Scholar 

  10. L. Callau, J. A. Reina, A. Mantecon, M. Tessier, and N. Spassky, Macromolecules, 32, 7790 (1999).

    Article  CAS  Google Scholar 

  11. B. G. Kim, J. S. Chung, E. H. Sohn, S. Y. Kwak, and J. C. Lee, Macromolecules, 42, 3333 (2009).

    Article  CAS  Google Scholar 

  12. M. Perez, J. C. Ronda, J. A. Reina, and A. Serra, Polymer, 39, 3885 (1998).

    Article  CAS  Google Scholar 

  13. C. M. Casado, B. González, I. Cusdrado, B. Alonso, M. Moran, and J. Losada, Angew. Chem. Int. Ed., 39, 2135 (2000).

    Article  CAS  Google Scholar 

  14. B. Alonso, P. G. Armada, J. Losada, I. Cuadrado, B. Gonzalez, and C. M. Casado, Biosens. Bioelectron., 19, 1617 (2004).

    Article  CAS  Google Scholar 

  15. S. K. Oh, L. A. Baker, and R. M. Crooks, Langmuir, 18, 6981 (2002).

    Article  CAS  Google Scholar 

  16. S. Nlate, J. Ruiz, V. Sartor, R. Navarro, J. C. Blais, and D. Astruc, Chem. Eur. J., 6, 2544 (2000).

    Article  CAS  Google Scholar 

  17. C. Kim, E. Park, C. K. Song, and B. W. Koo, Synth. Met., 123, 493 (2001).

    Article  CAS  Google Scholar 

  18. J. M. Gibbs, S. J. Park, D. R. Anderson, K. J. Watson, C. A. Mirkin, and S. T. Nguyen, J. Am. Chem. Soc., 127, 1170 (2005).

    Article  CAS  Google Scholar 

  19. P. Carvalheira, G. M. H. J. L. Gadiot, and W. P. C. de Klerk, Thermochim. Acta, 269/270, 273 (1995).

    Article  CAS  Google Scholar 

  20. T. Urbanski, Chemistry and Technology of Explosives Vol III; Pergamon Press, NewYork, 1985.

    Google Scholar 

  21. P. J. Swarts, I. Mathilda, G. J. Lamprecht, S. E. Greyling, and J. C. Swarts, S-Afr Tydskr Chem, 50, 208 (1994).

    Google Scholar 

  22. K. Subramanian, J. Polym. Sci. Part A: Polym. Chem., 37, 4090 (1999).

    Article  CAS  Google Scholar 

  23. S. T. Noh and B. S. Cho, J. Appl. Polym. Sci., 121, 3560 (2011).

    Article  Google Scholar 

  24. T. Ulrich, W. Mueller, Z. Yang, and I. Georg, J. Organomet. Chem., 463, 163 (1993).

    Article  Google Scholar 

  25. M. Senel, Synth. Met., 161, 1861 (2011).

    Article  CAS  Google Scholar 

  26. Y. Nakatsuji, T. Nakamura, M. Okahara, D. M. Dishong, and G. W. Gokel, J. Org. Chem., 48, 1237 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Tae Noh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, BS., Noh, ST. Synthesis and thermal properties of ferrocene-modified poly(epichlorohydrin-co-2-(methoxymethyl)oxirane). Macromol. Res. 21, 221–227 (2013). https://doi.org/10.1007/s13233-013-1074-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1074-x

Keywords

Navigation