Skip to main content
Log in

Targeting keratinocyte hyperproliferation, inflammation, oxidative species and microbial infection by biological macromolecule-based chitosan nanoparticle-mediated gallic acid–rutin combination for the treatment of psoriasis

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The study deals with the formulation of biological macromolecule chitosan-based Tween 80-coated nanoparticles to deliver gallic acid and rutin into the skin for psoriasis treatment. To optimize the nanoformulations for minimum particle size and maximum possible entrapment efficiency (dependent variables), 32 full factorial design was used to optimize the formulation. Concentration of Tween 80 and chitosan were independent variables. The optimized chitosan nanoformulation of gallic acid, rutin and their combination was explored against psoriasis using in vitro methods and HaCaT cell line. The results indicated excellent entrapment of drug in the chitosan polymer and Higuchi model of drug release. The optimized encapsulated Tween 80-coated chitosan nanoparticles containing combination of gallic acid and rutin showed the reduced keratinocyte hyperproliferation, antioxidant, anti-inflammatory and antimicrobial activity even better than the chitosan nanoparticles containing gallic acid and rutin individually in the nanoparticles. Anti-psoriasis like activity of Tween 80-coated nanoformulations of gallic acid may be attributed to faster penetration of the drug by increased permeation and fusion of drug molecules. Thus, the present in vitro investigation indicates that chitosan-based nanoformulations hold promising potential in the treatment of psoriasis. The activity was increased once we combine gallic acid and rutin.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. King-man HO, Psoriasis, Med Bull 15: 10–14

  2. Perera GK, Meglioand P, Nestle FO (2012) Psoriasis. Ann Rev Pathol Mech 7:385–422

    Article  CAS  Google Scholar 

  3. Gudjonsson JE, Jonhston A, Sigmundsdottir H, Valdimarsson H (2004) Immunopathogenic mechanisms in psoriasis. Clin Exp Immunol 135:1–8

    Article  CAS  Google Scholar 

  4. Yang DQ, Jiangand YF, Zhang Y (2005) Observation on effect of pifubing xuedu pill combined with diyin tablet in treatment of psoriasis. Chin J Integr Med 25:740–742

    Google Scholar 

  5. Zangenehand FZ, Shooshtary FS (2013) Psoriasis-types, causes and medication. INTECH Open Science. https://doi.org/10.5772/54728

    Article  Google Scholar 

  6. Mehnert W, Mader K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  CAS  Google Scholar 

  7. Suresh PK, Singh P, Saraf S (2013) Novel topical drugs carriers as a tool for treatment of psoriasis: progress and advances. Afr J Pharm Pharmacol 7:138–147

    Article  CAS  Google Scholar 

  8. Jadhav NR, Powar T, Shinde S, Nadaf S (2014) Herbal nanoparticles: a patent review. Asian J Pharm 8:1–12

    Article  Google Scholar 

  9. Nan W, Ding L, Shi X, Sui XB (2018) Topical use of quercetin-loaded chitosan nanoparticles against ultraviolet B radiation. Front Pharmacol 9:826

    Article  CAS  Google Scholar 

  10. Srivastava J, Gupta N, Kushwaha A, Umrao S, Srivastava A, Singh M (2019) Highly sensitive and selective estimation of aspartame by chitosan nanoparticles–graphene nanocomposite tailored EQCM-MIP sensor. Polym Bull 76:4431–4449

    Article  CAS  Google Scholar 

  11. Kumar DA, Singh D, Mishra J, Shrikantand N, Pandey S (2011) Development and characterization of chitosan nanoparticles loaded with amoxycillin. Int Res J Pharm 2:145–151

    Google Scholar 

  12. Gonzalez RJ, Tarloff JB (2001) Evaluation of hepatic sub cellular Fractions for Alamar blue and MTT reductase activity. Toxicol In Vitro 15:257–259

    Article  CAS  Google Scholar 

  13. Denizot FF, Lang RR (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:5–22

    Article  Google Scholar 

  14. Mishra K, Ojhaand H, Chaudhury NK (2012) Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem 130:1036–1043

    Article  CAS  Google Scholar 

  15. Bailey J, Shaw A, Fischer R, Ryan BJ, Kessler BM, McCullagh J, Wade-Martins R, Channon KM, Crabtree MJ (2017) A novel role for endothelial tetrahydrobiopterin in mitochondrial redox balance. Free Radic Biol Med 104:214–225

    Article  CAS  Google Scholar 

  16. Rahman H, Eswaraiahand MC, Dutta AM (2015) In-vitro anti-inflammatory and anti-arthritic activity of Oryza sativa var. Joha rice (an aromatic indigenous rice of assam). Am Eurasian J Agric Environ Sci 15:115–121

    Google Scholar 

  17. Umadevi K, Krishnaveni M (2013) Antibacterial activity of pigment produced from Micrococcus luteus KF532949. IJCAS 4:149–152

    CAS  Google Scholar 

  18. Jaisinghani RN (2017) Antibacterial properties of quercetin. Microbiol Res 8:13–14

    Article  CAS  Google Scholar 

  19. Raza ZA, Anwar F, Abid S (2019) Multi-response optimization in impregnation of chitosan nanoparticles on polyester fabric. Polym Bull 76:3039–3058

    Article  CAS  Google Scholar 

  20. Jonassen H, Kjoniksen AL, Hiorth M (2012) Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromol 13:3747–3756

    Article  CAS  Google Scholar 

  21. Yadav M, Sardana I, Sharma A, Sharma N, Nagpal K, Malik P (2019) Emerging pathophysiological targets of psoriasis for future therapeutic strategies. Curr Drug Targets Infect Disord. https://doi.org/10.2174/1871526519666190617162701

    Article  Google Scholar 

  22. Zhang X, Huang Q, Liu M, Tian J, Zeng G, Li Z, Wang K, Zhang Q, Wan Q, Deng F, Wei Y (2015) Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2 + removal. Appl Surf Sci 15(343):19–27

    Article  CAS  Google Scholar 

  23. Zhang X, Huang Q, Deng F, Huang H, Wan Q, Liu M, Wei Y (2017) Mussel-inspired fabrication of functional materials and their environmental applications: progress and prospects. Appl Mater Today 7:222–238

    Article  Google Scholar 

  24. Huang Q, Liu M, Chen J, Wan Q, Tian J, Huang L, Jiang R, Wen Y, Zhang X, Wei Y (2017) Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Appl Surf Sci 419:35–44

    Article  CAS  Google Scholar 

  25. Ahn JM, Lee JS, Um SG, Rho BS, Lee KB, Park SG, Kim HJ, Lee Y, Chi YM, Yoon YE, Jo SH (2019) Mussel adhesive protein-conjugated vitronectin (fp-151-vt) induces anti-inflammatory activity on LPS-stimulated macrophages and UVB-irradiated keratinocytes. Immunol Invest 48:242–254

    Article  CAS  Google Scholar 

  26. Toth IY, Szekeres M, Turcu R, Sáringer S, Illes E, Nesztor D, Tombacz E (2014) Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core–shell magnetite nanoparticles. Langmuir 30:15451–15461

    Article  CAS  Google Scholar 

  27. Chebil L, Rhouma GB, Chekir-Ghedira L, Ghoul M (2015) Enzymatic polymerization of rutin and esculin and evaluation of the antioxidant capacity of polyrutin and polyesculin. In: Ekinci D (ed) Biotechnology. InTech, London, pp 117–133. https://doi.org/10.5772/60413

    Chapter  Google Scholar 

  28. Zhang X, Wang S, Xu L, Feng L, Ji Y, Tao L, Li S, Wei Y (2012) Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale 20:5581–5584

    Article  CAS  Google Scholar 

  29. Liu M, Zeng G, Wang K, Wan Q, Tao L, Zhang X, Wei Y (2016) Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale 38:16819–16840

    Article  CAS  Google Scholar 

  30. Nestle FO, Daniel H, Barker J (2009) Psoriasis. N Engl J Med 361(2009):496–509

    Article  CAS  Google Scholar 

  31. Tse WP, Che CT, Liu K, Lin ZX (2006) Evaluation of the anti-proliferative properties of selected psoriasis-treating Chinese medicines on cultured HaCaTcells. J Ethnopharmacol 108:133–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Monu Yadav or Kalpana Nagpal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shandil, A., Yadav, M., Sharma, N. et al. Targeting keratinocyte hyperproliferation, inflammation, oxidative species and microbial infection by biological macromolecule-based chitosan nanoparticle-mediated gallic acid–rutin combination for the treatment of psoriasis. Polym. Bull. 77, 4713–4738 (2020). https://doi.org/10.1007/s00289-019-02984-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02984-9

Keywords

Navigation