Skip to main content

Advertisement

Log in

Natural medicine combined with nanobased topical delivery systems: a new strategy to treat psoriasis

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Psoriasis, an autoimmune inflammatory skin disorder, is one of the commonest immune-mediated disease conditions affecting individuals globally. At the moment, the conventional methods applied against psoriasis treatment have various drawbacks involving limited efficacy, skin irritation, immunosuppression, etc. Therefore, it is important for scientists to find a more potent and alternative drug approach towards psoriasis therapeutics. Natural medicine still remains an important source for new drug discovery due to its therapeutical significance in various drug administration routes. However, the traditional formulation of topical therapies for psoriasis is limited in efficacy, which limits the use of natural medicine. Based on the aforementioned limitations, the use of nanocarriers in preparation of these topical herbal products could be tremendously beneficial in enhancing the efficacy of topical medications. Growing pieces of evidence have proposed that the utilization of nanocarriers in transdermal preparation as a prospective technique, with regards to better potency, directs drug absorption to site of action, and minimum toxicity effect respectively. In the course of this review, we emphasized the pathological mechanism of psoriasis, natural medicine formula, active components of natural medicine, and nanopreparations used in the treatment of psoriasis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Data transparency.

References

  1. Chen ZX, Zhou DM, Wang Y, et al. Fire needle acupuncture or moxibustion for chronic plaque psoriasis: study protocol for a randomized controlled trial. Trials. 2019;20:20–674. https://doi.org/10.1186/s13063-019-3736-2.

    Article  Google Scholar 

  2. Wang W, Yu H, Wang H, et al. Astilbin reduces ROS accumulation and VEGF expression through Nrf2 in psoriasis-like skin disease. Biol Res. 2019;52:52–49. https://doi.org/10.1186/s40659-019-0255-2.

    Article  CAS  Google Scholar 

  3. Lima XT, Minnillo R, Spencer JM, et al. Psoriasis prevalence among the AAD National Melanoma/Skin Cancer Screening Program participants. J Eur Acad Dermatol Venereol. 2009;27(2013):680–5. https://doi.org/10.1111/j.1468-3083.2012.04531.x.

    Article  Google Scholar 

  4. Min C, Kim M, Oh DJ, et al. Bidirectional association between psoriasis and depression: two longitudinal follow-up studies using a national sample cohort. J Affect Disord. 2020;262:126–32. https://doi.org/10.1016/j.jad.2019.10.043.

    Article  PubMed  Google Scholar 

  5. Na CH, Chung J, Simpson EL. Quality of life and disease impact of atopic dermatitis and psoriasis on children and their families. Children. 2019;6:133. https://doi.org/10.3390/children6120133.

    Article  PubMed Central  Google Scholar 

  6. Parnami N, Garg T, Rath G, et al. Development and characterization of nanocarriers for topical treatment of psoriasis by using combination therapy. Artif Cell Nanomed B. 2013;42:406–12. https://doi.org/10.3109/21691401.2013.837474.

    Article  CAS  Google Scholar 

  7. Mabuchi T, Timothy W, Quinter S, et al. Chemokine receptors in the pathogenesis and therapy of psoriasis. J Dermatol Sci. 2012;65:4–11. https://doi.org/10.1016/j.jdermsci.2011.11.007.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmad U, Ahmad Z, Khan AA, et al. Strategies in development and delivery of nanotechnology based cosmetic products. Drug Res. 2018;68:545–52. https://doi.org/10.1055/a-0582-9372.

    Article  CAS  Google Scholar 

  9. Huang TM, Lin CF, Alalaiwe A, et al. Apoptotic or antiproliferative activity of natural products against keratinocytes for the treatment of psoriasis. Int J Mol Sci. 2019;20:2558. https://doi.org/10.3390/ijms20102558.

    Article  CAS  PubMed Central  Google Scholar 

  10. Rahman M, Alam K, Zaki Ahmad M, et al. Classical to current approach for treatment of psoriasis: a review. Endocr Metab Immune Disord Drug Targets. 2012:12:287–302. https://doi.org/10.2174/187153012802002901.

  11. Ma Z, Zhang B, Fan YQ, et al. Natural medicine combined with hepatic targeted drug delivery systems: a new strategy for the treatment of liver diseases. Biomed Pharmacother. 2019;117. https://doi.org/10.1016/j.biopha.2019.109128.

  12. Pradhan M, Alexander A, Singh MR, et al. Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed Pharmacother. 2018;107:447–63. https://doi.org/10.1016/j.biopha.2018.07.156.

    Article  CAS  PubMed  Google Scholar 

  13. Abdelgawad R, Nasr M, Moftah NH, et al. Phospholipid membrane tubulation using ceramide doping “cerosomes”: characterization and clinical application in psoriasis treatment. Eur J Pharm Sci. 2017;101:258–68. https://doi.org/10.1016/j.ejps.2017.02.030.

    Article  CAS  PubMed  Google Scholar 

  14. Ozturk AA, Kiyan HK. Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: formulation, characterization and anti-inflammatory activity by using in vivo HET-CAM assay. Microvasc Res. 2017;128. https://doi.org/10.1016/j.mvr.2019.103961.

  15. Itoh T, Hatano R, Komiya E, et al. Biological effects of IL-26 on T cell-mediated skin inflammation, including psoriasis. J Invest Dermatol. 2019;139:878–89. https://doi.org/10.1016/j.jid.2018.09.037.

    Article  CAS  PubMed  Google Scholar 

  16. Boehncke W, Brembilla NC. Unmet needs in the field of psoriasis: pathogenesis and treatment. Clin Rev Allerg Immu. 2018;55:295–311. https://doi.org/10.1007/s12016-017-8634-3.

    Article  CAS  Google Scholar 

  17. Michelle AL, Mayte SF, James GK. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–55. https://doi.org/10.1146/annurev-immunol-032713-120225.

    Article  CAS  Google Scholar 

  18. Fuentes-Duculan J, Suárez-Fariñas M, Zeba LC, et al. A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J Invest Dermatol. 2010;130:2412–22. https://doi.org/10.1038/jid.2010.165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song HS, Kim SJ, Park TI, et al. Immunohistochemical comparison of IL-36 and the IL-23/Th17 axis of generalized pustular psoriasis and acute generalized exanthematous pustulosis. Ann Dermatol. 2016;28:451. https://doi.org/10.5021/ad.2016.28.4.451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chiricozzi A, Romanelli P, Volpe E, et al. Scanning the immunopathogenesis of psoriasis. Int J Mol Sci. 2018;19:179. https://doi.org/10.3390/ijms19010179.

    Article  CAS  PubMed Central  Google Scholar 

  21. Havnaer A, Lee HH, Carmichael DJ, et al. Biological depletion of neutrophils attenuates pro-inflammatory markers and the development of the psoriatic phenotype in a murine model of psoriasis. Clinical Immunol. 2019;210:108294. https://doi.org/10.1016/j.clim.2019.108294.

    Article  CAS  Google Scholar 

  22. Zhu Z, Chen JL, Lin YT, et al. Aryl hydrocarbon receptor in cutaneous vascular endothelial cells restricts psoriasis development by negatively regulating neutrophil recruitment. J Invest Dermatol. 2020;140:1233–43. https://doi.org/10.1016/j.jid.2019.11.022.

    Article  CAS  PubMed  Google Scholar 

  23. Ding X, Sun Y, Wang Q, et al. Pharmacokinetics and pharmacodynamics of glycyrrhetinic acid with Paeoniflorin after transdermal administration in dysmenorrhea model mice. Phytomedicine. 2016;2:864–71. https://doi.org/10.1016/j.phymed.2016.05.005.

    Article  CAS  Google Scholar 

  24. Zheng Q, Jiang WC, Sun XY, et al. Total glucosides of paeony for the treatment of psoriasis: a systematic review and meta-analysis of randomized controlled trials. Phytomedicine. 2019;62:152940. https://doi.org/10.1016/j.phymed.2019.152940×.

    Article  CAS  PubMed  Google Scholar 

  25. Guo J, Liu J. Effect of white mange mixture in a murine model of psoriasis. ed. Exp Ther Med. 2019;18:881–7. https://doi.org/10.3892/etm.2019.7641.

  26. Chen X, Lu YP, Li XH. Effects of white mange mixture on the expression of Proliferation and Apoptosis of HaCaT Cells in Vitro. Zhonghua Zhongyiyao Xuekan. 2015;33:2961–3. https://doi.org/10.13193/j.issn.1673-7717.2015.12.040.

  27. Chiang CC, Chen WJ, Lin CY, et al. Kan-Lu-Hsiao-Tu-Tan, a natural medicine formula, inhibits human neutrophil activation and ameliorates imiquimod-induced psoriasis-like skin inflammation. J Ethnopharmacol. 2020;246:112246. https://doi.org/10.1016/j.jep.2019.112246.

    Article  CAS  PubMed  Google Scholar 

  28. Hsieh YJ, Yen MH, Chiang YW, et al. Gan-LuSiao-Du-Yin, a prescription of natural medicine, inhibited Enterovirus 71 replication, translation, and virus-induced cell apoptosis. J Ethnopharmacol. 2020;183:132–9. https://doi.org/10.1016/j.jep.2016.03.034.

    Article  Google Scholar 

  29. Chung I, Yuan SN, OuYang CN, et al. EFLA 945 restricts AIM2 inflammasome activation by preventing DNA entry for psoriasis treatment. Cytokine. 2020;127:154951. https://doi.org/10.1016/j.cyto.2019.154951.

    Article  CAS  PubMed  Google Scholar 

  30. Wu Z, Uchi H, Morino-Koga S, et al. Resveratrol inhibition of human keratinocyte proliferation via SIRT1/ARNT/ERK dependent downregulation of aquaporin 3. J Dermatol Sci. 2014;75:16–23. https://doi.org/10.1016/j.jdermsci.2014.03.004.

    Article  CAS  PubMed  Google Scholar 

  31. Chen M, Chang YY, Huang S, et al. Aromatic-turmerone attenuates LPS-induced neuroinflammation and consequent memory impairment by targeting TLR4-dependent signaling pathway. Mol Nutr Food Res. 2018;62:1700281. https://doi.org/10.1002/mnfr.201700281.

    Article  CAS  Google Scholar 

  32. Yang S, Liu J, Jiao JX, et al. Ar-turmerone exerts anti-proliferative and anti-inflammatory activities in HaCaT keratinocytes by inactivating hedgehog pathway. Inflammation. 2020;43:478–86. https://doi.org/10.1007/s10753-019-01131-w.

    Article  CAS  PubMed  Google Scholar 

  33. Li YL, Du ZY, Li PH, et al. Aromatic-turmerone ameliorates imiquimod-induced psoriasis-like inflammation of BALB/c mice. Int Immunopharmacol. 2018;64:319–25. https://doi.org/10.1016/j.intimp.2018.09.015.

    Article  CAS  PubMed  Google Scholar 

  34. Katare O, Raza K, Singh B, et al. Novel drug delivery systems in topical treatment of psoriasis: rigors and vigors. Indian J Dermatol Venereol Leprol. 2010;76:612–21. https://doi.org/10.4103/0378-6323.72451.

  35. Shi HJ, Zhou H, Ma AL, et al. Oxymatrine therapy inhibited epidermal cell proliferation and apoptosis in severe plaque psoriasis. Brit J Dermatol. 2019;181:1028–37. https://doi.org/10.1111/bjd.17852.

    Article  CAS  Google Scholar 

  36. Hou GS, Yu JP. Effect of oxymatrine on VEGF and mitotic index in patients with psoriasis vulgaris and its efficacy. Practical Pharmacy And Clinical Remedies. 2017;20:545–7. https://doi.org/10.14053/j.cnki.ppcr.201705015

  37. Shi HJ. Oxymatrine therapy inhibited epidermal cell proliferation and apoptosis in severe plaque psoriasis. Br J Dermatol. 2019;181:1028–37. https://doi.org/10.1111/bjd.17852.

    Article  CAS  PubMed  Google Scholar 

  38. Shi HJ, Zhou R, Jin SJ. Oxymatrine on the levels of IL-2, IL-10 and TNF-α in serum on mice's psoriasis-like animal model. West China J Pharm. 2010;25:418–20. https://doi.org/10.13375/j.cnki.wcjps.2010.04.028

  39. Nainwal N, Jawsa S, Singh R, et al. Transdermal applications of ethosomes-a detailed review. J Liposome Res. 2019;29:103–13. https://doi.org/10.1080/08982104.2018.1517160.

    Article  CAS  PubMed  Google Scholar 

  40. Gollavilli H, Hegde AR, Managuli RS, et al. Naringin nano-ethosomal novel sunscreen creams: development and performance evaluation. Colloid Surface B. 2020;193:111122. https://doi.org/10.1016/j.colsurfb.2020.111122.

    Article  CAS  Google Scholar 

  41. Raj R, Raj PM, Ram A. Nanosized ethanol based malleable liposomes of cytarabine to accentuate transdermal delivery: formulation optimization, in vitro skin permeation and in vivo bioavailability. Artif Cell Nanomed B. 2018;46:951–63. https://doi.org/10.1080/21691401.2018.1473414.

    Article  CAS  Google Scholar 

  42. Souto EB, Baldim I, Oliveira WP, et al. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv. 2020;17:357–77. https://doi.org/10.1080/17425247.2020.1727883.

    Article  CAS  PubMed  Google Scholar 

  43. Yu Y, Feng RX, Li JY, et al. A hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier ocular drug delivery platform. Asian J Pharm Sci. 2019;14:423–34. https://doi.org/10.1080/08982104.2020.1748646.

    Article  CAS  PubMed  Google Scholar 

  44. Abu LA, Ishida T. Liposomal delivery systems: design optimization and current applications. Biol Pharm Bull. 2017;40:1–10. https://doi.org/10.1248/bpb.b16-00624.

    Article  Google Scholar 

  45. Mukul A, Kalpa N, Alfred F. Transdermal delivery from liposomal formulations-evolution of the technology over the last three decades. J Control Release. 2016;242:126–40. https://doi.org/10.1016/j.jconrel.2016.09.008.

    Article  CAS  Google Scholar 

  46. Sinico C, Manconi M, Peppi M, et al. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle-kin interaction. J Control Release. 2005;103:123–36. https://doi.org/10.1016/j.jconrel.2004.11.020.

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, Ma Y, Tao Y, et al. Formulation and evaluation of a topical liposomal gel containing a combination of zedoary turmeric oil and tretinoin for psoriasis activity. J liposome res. 2020;31:1–15. https://doi.org/10.1080/08982104.2020.1748646.

    Article  CAS  Google Scholar 

  48. Doppalapudi S, Jain A, et al. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur J Pharma Sci. 2017;96:515–29. https://doi.org/10.1016/j.ejps.2016.10.025.

    Article  CAS  Google Scholar 

  49. Cheng YC, Li TS, Su HL, et al. Transdermal delivery systems of natural products applied to skin therapy and care. Molecules. 2020;25:5051. https://doi.org/10.3390/molecules25215051.

    Article  CAS  PubMed Central  Google Scholar 

  50. Nainwal N, Jawla S, Singh R, et al. Transdermal applications of ethosomes-a detailed review. J Liposome Res. 2019;29:103–13. https://doi.org/10.1080/08982104.2018.1517160.

    Article  CAS  PubMed  Google Scholar 

  51. Fathalla D, Youssef EMK, Soliman GM. Liposomal and ethosomal gels for the topical delivery of anthralin: preparation, comparative evaluation and clinical assessment in psoriatic patients. Pharmaceutics. 2020;12:446. https://doi.org/10.3390/pharmaceutics12050446.

    Article  CAS  PubMed Central  Google Scholar 

  52. Zhang Y, Xia Q, Li YY, et al. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: a new strategy for clustering drug in inflammatory skin. Theranostics. 2019;9:48–64. https://doi.org/10.7150/thno.29715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arora D, Nanda S. Quality by design driven development of resveratrol loaded ethosomal hydrogel for improved dermatological benefits via enhanced skin permeation and retention. Int J Pharmaceut. 2019;567:118448. https://doi.org/10.3390/10.1016/j.ijpharm.2019.118448.

    Article  CAS  Google Scholar 

  54. Nainwal N, Jawla S, Singh R, et al. Transdermal applications of ethosomes - a detailed review. J Liposome Res. 2019;29:103–13. https://doi.org/10.1080/08982104.2018.1517160.

    Article  CAS  PubMed  Google Scholar 

  55. Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22–36. https://doi.org/10.1016/j.jconrel.2014.04.015.

    Article  CAS  PubMed  Google Scholar 

  56. Meng S, Sun L, Wang L, et al. Loading of water-insoluble celastrol into niosome hydrogels for improved topical permeation and anti-psoriasis activity. Colloid Surface B. 2019;182:110352. https://doi.org/10.1016/j.colsurfb.2019.110352.

    Article  CAS  Google Scholar 

  57. Marianecci C, Rinaldi F, Mastriota M, et al. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: human and murine models. J Controll Release. 2012;164:17–25. https://doi.org/10.1016/j.jconrel.2012.09.018.

    Article  CAS  Google Scholar 

  58. Gu Y, Yang M, Tang XM, et al. Lipid nanoparticles loading triptolide for transdermal delivery: mechanisms of penetration enhancement and transport properties. J Nanobiotechnol. 2018;16:68. https://doi.org/10.1186/s12951-018-0389-3.

    Article  CAS  Google Scholar 

  59. Joshi MD, Müller RH. Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm. 2009;71:161–72. https://doi.org/10.1016/j.ejpb.2008.09.003.

    Article  CAS  PubMed  Google Scholar 

  60. Garcês A, Amaral MH, Sousa Lobo JM, et al. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: a review. Eur J Pharmaceut Sci. 2018;112:159–67. https://doi.org/10.1016/j.ejps.2017.11.023.

    Article  CAS  Google Scholar 

  61. Chen J, Wei N, Lopez-Garcia M, et al. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications. Eur J Pharm Biopharm. 2017;117:286–91. https://doi.org/10.1016/j.ejpb.2017.04.008.

    Article  CAS  PubMed  Google Scholar 

  62. Agrawal U, Gupta M, Vyas SP. Capsaicin delivery into the skin with lipidic nanoparticles for the treatment of psoriasis. Artif Cell Nanomed B. 2014;43:33–9. https://doi.org/10.3109/21691401.2013.832683.

    Article  CAS  Google Scholar 

  63. Rapalli VK, Kaul V, Waghule T, et al. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur J Pharm Sci. 2020;152:105438. https://doi.org/10.1016/j.ejps.2020.105438.

    Article  CAS  PubMed  Google Scholar 

  64. Czajkowska-Kosnik A, Szekalska M, Winnicka K. Winnicka, Nanostructured lipid carriers: a potential use for skin drug delivery systems. Pharmacol Rep. 2019;71:156–66. https://doi.org/10.1016/j.pharep.2018.10.008.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Z, Tsai PC, Ramezanli T, et al. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wires Nanomed Nanobi. 2013;5:205–18. https://doi.org/10.1002/wnan.1211.

    Article  CAS  Google Scholar 

  66. Savian AL, Rodrigues D, Weber Z, et al. Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug. Mat Sci Eng C-Mater. 2015;46:69–76. https://doi.org/10.1016/j.msec.2014.10.011.

    Article  CAS  Google Scholar 

  67. Deng S, Gigliobianco MR, Censi R, et al. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials. 2020;10:847. https://doi.org/10.3390/nano10050847.

    Article  CAS  PubMed Central  Google Scholar 

  68. Sheihet L, Chandra P, Batheja P, et al. Tyrosine-derived nanospheres for enhanced topical skin penetration. Int J Pharmaceut. 2008;350:312–9. https://doi.org/10.1016/j.ijpharm.2007.08.022.

    Article  CAS  Google Scholar 

  69. Tan Q, Liu WD, Guo CY, et al. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomed. 2011;6:1621–30. https://doi.org/10.2147/IJN.S22411.

    Article  CAS  Google Scholar 

  70. Kilfoyle BE, Sheihet L, Zhang Z, et al. Development of paclitaxel-TyroSpheres for topical skin treatment. J Control Release. 2012;163:18–24. https://doi.org/10.1016/j.jconrel.2012.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hatahet T, Morille M, Hommoss A, et al. Liposomes, lipid nanocapsules and smartCrystals®: a comparative study for an effective quercetin delivery to the skin. Int J Pharmaceut. 2018;542:176–85. https://doi.org/10.1016/j.ijpharm.2018.03.019.

    Article  CAS  Google Scholar 

  72. Enea M, Pereira E, Peixoto de Almeida M, et al. Gold Nanoparticles Induce Oxidative Stress and Apoptosis in Human Kidney Cells. Nanomaterials (Basel). 2020;10. https://doi.org/10.3390/nano10050995.

  73. Zhang X, Liu ZG, Shen W, et al. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17:1534. https://doi.org/10.3390/ijms17091534.

    Article  CAS  PubMed Central  Google Scholar 

  74. Elbagory AM, Hussein AA, Meyer M. The in vitro immunomodulatory effects of gold nanoparticles synthesized from Hypoxis hemerocallidea aqueous extract and hypoxoside on macrophage and natural killer cells. 2019;14:9007–18. https://doi.org/10.2147/IJN.S216972.

    Article  CAS  Google Scholar 

  75. Crisan D, Scharffetter-Kochanek K, Crisan M, et al. Topical silver and gold nanoparticles complexed with Cornus mas suppress inflammation in human psoriasis plaques by inhibiting NF-κB activity. Exp Dermatol. 2018;27:1166–9. https://doi.org/10.1111/exd.13707.

    Article  CAS  PubMed  Google Scholar 

  76. David L, Moldovan L, Vulcu A, et al. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloid Surface B. 2014;122:767–77. https://doi.org/10.1016/j.colsurfb.2014.08.018.

    Article  CAS  Google Scholar 

  77. Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano. 2013;7:7442–7. https://doi.org/10.1021/nn404501g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rahman M, Akhter S, Ahmad J, et al. Nanomedicine-based drug targeting for psoriasis: potentials and emerging trends in nanoscale pharmacotherapy. Expert Opin Drug Deliv. 2014;12:635–52. https://doi.org/10.1517/17425247.2015.982088.

    Article  CAS  PubMed  Google Scholar 

  79. Dermol-Cerne J, Pirc E, Miklavcic D. Mechanistic view of skin electroporation - models and dosimetry for successful applications: an expert review. Expert Opin Drug Deliv. 2020;17:689–704. https://doi.org/10.1080/17425247.2020.1745772.

    Article  PubMed  Google Scholar 

  80. Jiang BW, Zhang WJ, Wang Y, et al. Convallatoxin induces HaCaT cell necroptosis and ameliorates skin lesions in psoriasis-like mouse models. Biomed Pharmacother. 2020;121:109615. https://doi.org/10.1016/j.biopha.2019.109615.

    Article  CAS  PubMed  Google Scholar 

  81. Deng GL, Chen WJ, Wang P, et al. Inhibition of NLRP3 inflammasome-mediated pyroptosis in macrophage by cycloastragenol contributes to amelioration of imiquimod-induced psoriasis-like skin inflammation in mice. Inter Immunopharmacol. 2019;74:105682. https://doi.org/10.1016/j.intimp.2019.105682.

    Article  CAS  Google Scholar 

  82. Zhou LL, Lin ZX, Fuang KP, et al. Celastrol-induced apoptosis in human HaCaT keratinocytes involves the inhibition of NF-κB activity. Eur J Pharmacol. 2011;670:399–408. https://doi.org/10.1016/j.ejphar.2011.09.014.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang SS, Liu XD, Mei LH, et al. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complem Alter M. 2016;16:334. https://doi.org/10.1186/s12906-016-1325-4.

    Article  CAS  Google Scholar 

  84. Li T, Wei Z, Sun Y, et al. Withanolides, Extracted from Datura Metel L. Inhibit Keratinocyte Proliferation and Imiquimod-Induced Psoriasis-Like Dermatitis via the STAT3/P38/ERK1/2 Pathway. Molecules. 2019;24. https://doi.org/10.3390/molecules24142596.

  85. Deenonpoe R, Prayong P, Thippamom N, et al. Anti-inflammatory effect of naringin and sericin combination on human peripheral blood mononuclear cells (hPBMCs) from patient with psoriasis. BMC Complem Alter M. 2019;19:168. https://doi.org/10.1186/s12906-019-2535-3.

    Article  CAS  Google Scholar 

  86. Feng L, Song PP, Xu F, et al. cis-Khellactone inhibited the proinflammatory macrophages via promoting autophagy to ameliorate imiquimod-induced psoriasis. J Invest Dermatol. 2019;139:1946–56. https://doi.org/10.1016/j.jid.2019.02.021.

    Article  CAS  PubMed  Google Scholar 

  87. Ye CJ, Li SA, Zhang Y, et al. Geraniol targets K1.3 ion channel and exhibits anti-inflammatory activity in vitro and in vivo. Fitoterapia. 2019;139:104394. https://doi.org/10.1016/j.fitote.2019.104394.

  88. Fan H, Wang Y, Zhang XL, et al. Ginsenoside compound K ameliorates imiquimod-induced psoriasis-like dermatitis through inhibiting REG3A/RegIIIγ expression in keratinocytes. Biochem Bioph Res Co. 2019;515:665–71. https://doi.org/10.1016/j.bbrc.2019.06.007.

    Article  CAS  Google Scholar 

  89. Jia JJ, Mo XM, Liu JF, et al. Mechanism of danshensu-induced inhibition of abnormal epidermal proliferation in psoriasis. Eur J Pharmacolo. 2020;868:172881. https://doi.org/10.1016/j.ejphar.2019.172881.

    Article  CAS  Google Scholar 

  90. Wu S, Zhao MJ, Sun YH. The potential of Diosgenin in treating psoriasis: Studies from HaCaT keratinocytes and imiquimod-induced murine model. Life Sci. 2020;241. https://doi.org/10.1016/j.lfs.2019.117115.

Download references

Funding

This work was financially supported by a grant (81803862) from the National Natural Science Foundation of China, Tianjin Municipal Education Commission research project (2017KJ131).

Author information

Authors and Affiliations

Authors

Contributions

Li Nan and Liu Zhidong had the idea for the article; Zhao Zhiyue, Liu Tao, and Zhu Shan performed the literature search and data analysis, and Pi Jiaxin, Guo Pan, Qi Dongli, and Li Nan drafted and critically revised the work.

Corresponding authors

Correspondence to Zhidong Liu or Nan Li.

Ethics declarations

Ethics approval and consent to participate

We have stated that ethics approval and consent to participate is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Liu, T., Zhu, S. et al. Natural medicine combined with nanobased topical delivery systems: a new strategy to treat psoriasis. Drug Deliv. and Transl. Res. 12, 1326–1338 (2022). https://doi.org/10.1007/s13346-021-01031-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01031-3

Keywords

Navigation