Skip to main content
Log in

Adsorption of 60Co from aqueous solution onto alginate–acrylic acid–vinylsulfonic acid/multiwalled carbon nanotubes composite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Alginate–acrylic acid–vinylsulfonic acid/functionalized multiwalled carbon nanotubes (Alg–AA–VSA/f-MWCNTs) composite was prepared by gamma radiation as initiator the graft copolymerization of VSA and AA on Alg onto f-MWCNTs surface matching to template polymerization technique. The optimum synthesis conditions of the nanocomposite are 2.5 wt% Alg, 40 wt% comonomer, 0.5 wt% f-MWCNTs, 0.8 wt% NMBA, AA/VSA monomer composition of 70/30 wt%, and 25 kGy absorbed dose. The structure of the nanocomposite was analyzed using FTIR, TGA, SEM, and XRD. The adsorption of Co(II) radionuclide was applied by batch technique. The kinetic, isotherm, and thermodynamic data of the adsorption of Co(II) deduced that the adsorption followed the second-order model and Langmuir model and became favorable at a low temperature, respectively. Maximum capacity of Co(II) adsorption was 306.399 mg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Famá LM, Pettarin V, Goyanes SN, Bernal CR (2011) Starch/multi-walled carbon nanotubes composites with improved mechanical properties. Carbohydr Polym 83:1226–1231. https://doi.org/10.1016/j.carbpol.2010.09.027

    Article  CAS  Google Scholar 

  2. Swain SK, Pradhan AK, Sahu HS (2013) Synthesis of gas barrier starch by dispersion of functionalized multiwalled carbon nanotubes. Carbohydr Polym 94:663–668. https://doi.org/10.1016/j.carbpol.2013.01.056

    Article  PubMed  CAS  Google Scholar 

  3. Prusty G, Das R, Swain SK (2014) Influence of functionalized single-walled carbon nanotubes on morphology, conducting and oxygen barrier properties of poly (acrylonitrile-co-starch). Compos Part B Eng 62:236–241. https://doi.org/10.1016/j.compositesb.2014.03.006

    Article  CAS  Google Scholar 

  4. Li Y, Liu F, Xia B et al (2010) Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J Hazard Mater 177:876–880. https://doi.org/10.1016/j.jhazmat.2009.12.114

    Article  PubMed  CAS  Google Scholar 

  5. Cheng J, Zheng P, Zhao F, Ma X (2013) The composites based on plasticized starch and carbon nanotubes. Int J Biol Macromol 59:13–19. https://doi.org/10.1016/j.ijbiomac.2013.04.010

    Article  PubMed  CAS  Google Scholar 

  6. Sand A, Yadav M, Mishra DK, Behari K (2010) Modification of alginate by grafting of N-vinyl-2-pyrrolidone and studies of physicochemical properties in terms of swelling capacity, metal-ion uptake and flocculation. Carbohydr Polym 80:1147–1154. https://doi.org/10.1016/j.carbpol.2010.01.036

    Article  CAS  Google Scholar 

  7. Mohamed SF, Mahmoud GA, Taleb MFA (2013) Synthesis and characterization of poly(acrylic acid)-g-sodium alginate hydrogel initiated by gamma irradiation for controlled release of chlortetracycline HCl. Monatshefte fur Chemie 144:129–137. https://doi.org/10.1007/s00706-012-0776-7

    Article  CAS  Google Scholar 

  8. Ma X, Yu J, Wang N (2008) Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos Sci Technol 68:268–273. https://doi.org/10.1016/j.compscitech.2007.03.016

    Article  CAS  Google Scholar 

  9. Castrejón-Parga KY, Camacho-Montes H, Rodríguez-González CA et al (2015) Chitosan-starch film reinforced with magnetite-decorated carbon nanotubes. J Alloys Compd 615:S505–S510. https://doi.org/10.1016/j.jallcom.2013.12.269

    Article  CAS  Google Scholar 

  10. Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38:1590–1628. https://doi.org/10.1016/j.progpolymsci.2013.05.002

    Article  CAS  Google Scholar 

  11. Cao X, Chen Y, Chang PR, Huneault MA (2007) Preparation and properties of plasticized starch/multiwalled carbon nanotubes composites. J Appl Polym Sci 106:1431–1437. https://doi.org/10.1002/app.26799

    Article  CAS  Google Scholar 

  12. Vipin AK, Ling S, Fugetsu B (2014) Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal. Carbohydr Polym 111:477–484. https://doi.org/10.1016/j.carbpol.2014.04.037

    Article  PubMed  CAS  Google Scholar 

  13. Hanafi A (2010) Adsorption of cesium, thallium, strontium and cobalt radionuclides using activated carbon. Asian J Chem 1:292–300. https://doi.org/10.4208/jams.100809.112309a

    Article  Google Scholar 

  14. Caramal C, Bulgariu L, Macoveanu M (2009) Cobalt (II) removal from aqueous solutions by adsorption on modified peat moss. Chem Bull Politeh Univ 54:13–17

    Google Scholar 

  15. Fang F, Kong L, Huang J et al (2014) Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. Elsevier, Amsterdam

    Book  Google Scholar 

  16. Fang XH, Fang F, Lu CH, Zheng L (2017) Removal of Cs+, Sr2+, and Co2+Ions from the mixture of organics and suspended solids aqueous solutions by zeolites. Nucl Eng Technol 49:556–561. https://doi.org/10.1016/j.net.2016.11.008

    Article  CAS  Google Scholar 

  17. El-Zakla T, Yakout SM, Rizk MA et al (2011) Removal of Cobalt-60 and Caesium-134 ions from contaminated solutions by sorption using activated carbon. Adsorpt Sci Technol 29:331–344. https://doi.org/10.1260/0263-6174.29.3.331

    Article  CAS  Google Scholar 

  18. Parab H, Joshi S, Sudersanan M et al (2010) Removal and recovery of cobalt from aqueous solutions by adsorption using low cost lignocellulosic biomass-coir pith. J Environ Sci Heal Part A Toxic/Hazard Subst Environ Eng 45:603–611. https://doi.org/10.1080/10934521003595662

    Article  CAS  Google Scholar 

  19. Prabakaran R, Arivoli S (2013) Removal of cobalt (II) from aqueous solutions by adsorption on low cost activated carbon. Int J Sci Eng Technol Res 2:271–283

    Google Scholar 

  20. Vafajoo L, Cheraghi R, Dabbagh R, McKay G (2018) Removal of cobalt (II) ions from aqueous solutions utilizing the pre-treated 2-Hypnea Valentiae algae: equilibrium, thermodynamic, and dynamic studies. Chem Eng J 331:39–47. https://doi.org/10.1016/j.cej.2017.08.019

    Article  CAS  Google Scholar 

  21. Zhang X, Wang X, Chen Z (2017) Radioactive cobalt(II) removal from aqueous solutions using a reusable nanocomposite: Kinetic, isotherms, and mechanistic study. Int J Environ Res Public Health 14:1453. https://doi.org/10.3390/ijerph14121453

    Article  PubMed Central  CAS  Google Scholar 

  22. Liang S, Li G, Tian R (2016) Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation. J Mater Sci 51:3513–3524. https://doi.org/10.1007/s10853-015-9671-z

    Article  CAS  Google Scholar 

  23. Sand A, Yadav M, Behari K (2010) Preparation and characterization of modified sodium carboxymethyl cellulose via free radical graft copolymerization of vinyl sulfonic acid in aqueous media. Carbohydr Polym 81:97–103. https://doi.org/10.1016/j.carbpol.2010.02.001

    Article  CAS  Google Scholar 

  24. Mishra MM, Sand A, Mishra DK et al (2010) Free radical graft copolymerization of N-vinyl-2-pyrrolidone onto k-carrageenan in aqueous media and applications. Carbohydr Polym 82:424–431. https://doi.org/10.1016/j.carbpol.2010.04.080

    Article  CAS  Google Scholar 

  25. Kim MK, Sundaram KS, Iyengar GA, Lee KP (2015) A novel chitosan functional gel included with multiwall carbon nanotube and substituted polyaniline as adsorbent for efficient removal of chromium ion. Chem Eng J 267:51–64. https://doi.org/10.1016/j.cej.2014.12.091

    Article  CAS  Google Scholar 

  26. Siyam T, Abd-Elatif ZH (1999) Gamma radiation-induced preparation of poly(dimethylaminoethyl methacrylate-acrylamide-acrylic acid) as exchanger. J Macromol Sci, Pure Appl Chem 36A:417–428. https://doi.org/10.1081/MA-100101539

    Article  Google Scholar 

  27. Siyam T, Ayoub R (1997) Gamma radiation-induced template polymerization of acrylic acid in the presence of polyactrylamide. J Macromol Sci, Pure Appl Chem 34:1727–1735. https://doi.org/10.1080/10601329708010038

    Article  Google Scholar 

  28. Siyam T (2001) Development of acrylamide polymers for the treatment of waste water. Des Monomers Polym 4:107–168. https://doi.org/10.1163/156855500300203377

    Article  CAS  Google Scholar 

  29. Abdel-Aziz HM, Hanafi HA, Abozahra SF, Siyam T (2011) Preparation of poly(acrylamide-maleic acid) resin by template polymerization and its use for adsorption of co(II) and ni(II). Int J Polym Mater Polym Biomater 60:89–101. https://doi.org/10.1080/00914037.2010.504166

    Article  CAS  Google Scholar 

  30. Borai EH, Hamed MG, El-kamash AM et al (2015) Synthesis, characterization and application of a modified acrylamide–styrene sulfonate resin and a composite for sorption of some rare earth elements. New J Chem 39:7409–7420. https://doi.org/10.1039/C5NJ01479D

    Article  CAS  Google Scholar 

  31. Moustafa KA, Abdel-Aziz HM, Siyam T (2008) Synthesis of poly(acrylamide-acrylic acid) resin and its use for biological applications. J Radiat Res Appl Sci 1:233–244

    Google Scholar 

  32. Abdel-Aziz HM, Siyam T (2011) Radiation synthesis of poly(acrylamide-acrylic acid-dimethylaminoethyl methacrylate) resin and its use for binding of some anionic dyes. Water Air Soil Pollut 218:165–174. https://doi.org/10.1007/s11270-010-0632-5

    Article  CAS  Google Scholar 

  33. Senna MM, Siyam T, Mahdy S (2004) Physico-chemical studies on Cu(II) complexes of acrylate chelating polymers. J Macromol Sci, Pure Appl Chem 41A:1187–1203. https://doi.org/10.1081/MA-200026568

    Article  CAS  Google Scholar 

  34. El-Zahhar AA, Abdel-Aziz HM, Siyam T (2006) Some synthesized polymeric composite resins for the removal of Co(II) and Eu(III) from aqueous solutions. J Radioanal Nucl Chem 267:657–664. https://doi.org/10.1007/s10967-006-0099-4

    Article  CAS  Google Scholar 

  35. Sallam KM, Abdel-Ghany IY, Abdel-Aziz HM, Siyam T (2011) Comparative study of estradiol trapped in polymer gels versus estradiol conjugated to bovine serum albumin for production of polyclonal antibody. J Radioanal Nucl Chem 289:647–652. https://doi.org/10.1007/s10967-011-1133-8

    Article  CAS  Google Scholar 

  36. Kim SJ, Park SJ, Kim SI (2004) Properties of smart hydrogels composed of polyacrylic acid/poly(vinyl sulfonic acid) responsive to external stimuli. Smart Mater Struct 13:317–322. https://doi.org/10.1088/0964-1726/13/2/010

    Article  CAS  Google Scholar 

  37. Hussain T, Ansari M, Ranjha NM et al (2013) Chemically cross-Linked poly(acrylic-co-vinylsulfonic) acid hydrogel for the delivery of isosorbide mononitrate. Sci World J 2013:1–9. https://doi.org/10.1155/2013/340737

    Article  CAS  Google Scholar 

  38. Hemalatha P (2016) Studies on copoly (N-vinylpyrrolidone–acrylic acid)—as an antimicrobial. Int J Innov Res Dev 5:7–12

    Google Scholar 

  39. Yadav M, Sand A, Mishra MM et al (2012) Synthesis, characterization and applications of graft copolymer (k-carrageenan-g-vinylsulfonic acid). Int J Biol Macromol 50:826–832. https://doi.org/10.1016/j.carbpol.2009.07.026

    Article  PubMed  CAS  Google Scholar 

  40. Geethanjali R, Subhashini S (2014) Synthesis of water soluble polyvinyl alcohol-based terpolymer and evaluation of corrosion inhibition property on mild steel in hydrochloric acid. Res J Recent Sci 3:170–176

    Google Scholar 

  41. Tiwari A, Singh SP (2008) Synthesis and characterization of biopolymer-based electrical conducting graft copolymers. J Appl Polym Sci 108:1169–1177. https://doi.org/10.1002/app.27789

    Article  CAS  Google Scholar 

  42. Singha AS, Rana AK (2011) Kinetics of graft copolymerization of acrylic acid onto cannabis indica fibre. Iran Polym J 20:913–929

    CAS  Google Scholar 

  43. Soleimani F, Sadeghi M, Shahsavari H (2012) Graft copolymerization of gelatin-g-poly (acrylic acid-co-acrylamide) and calculation of grafting parameters. Indian J Sci Technol 5:2041–2046

    CAS  Google Scholar 

  44. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym 66:229–245. https://doi.org/10.1016/j.carbpol.2006.03.006

    Article  CAS  Google Scholar 

  45. Abdelmonem IM, Metwally E, Siyam TE et al (2019) Radiation synthesis of starch-acrylic acid–vinyl sulfonic acid/multiwalled carbon nanotubes composite for the removal of 134Cs and 152+154Eu from aqueous solutions. J Radioanal Nucl Chem 319:1145–1157. https://doi.org/10.1007/s10967-018-6392-1

    Article  CAS  Google Scholar 

  46. Tsubokawa N (2005) Preparation and properties of polymer-grafted carbon nanotubes and nanofibers. Polym J 37:637–655. https://doi.org/10.1295/polymj.37.637

    Article  CAS  Google Scholar 

  47. Wang JP, Chen YZ, Ge XW, Yu HQ (2007) Gamma radiation-induced grafting of a cationic monomer onto chitosan as a flocculant. Chemosphere 66:1752–1757. https://doi.org/10.1016/j.chemosphere.2006.06.072

    Article  PubMed  CAS  Google Scholar 

  48. Blázquez G, Martín-Lara MA, Tenorio G, Calero M (2011) Batch biosorption of lead(II) from aqueous solutions by olive tree pruning waste: equilibrium, kinetics and thermodynamic study. Chem Eng J 168:170–177. https://doi.org/10.1016/j.cej.2010.12.059

    Article  CAS  Google Scholar 

  49. Sartape AS, Mandhare AM, Jadhav VV et al (2017) Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab J Chem 10:S3229–S3238. https://doi.org/10.1016/j.arabjc.2013.12.019

    Article  CAS  Google Scholar 

  50. Rout PR, Bhunia P, Dash RR (2015) A mechanistic approach to evaluate the effectiveness of red soil as a natural adsorbent for phosphate removal from wastewater. Desalin Water Treat 54:358–373. https://doi.org/10.1080/19443994.2014.881752

    Article  CAS  Google Scholar 

  51. Schweitzer GK, Pesterfiel LL (2010) The Aqueous Chemistry of the Elements. New York: Oxford University Press

    Google Scholar 

  52. El-Sweify FH, Abdelmonem IM, El-Masry AM et al (2019) Adsorption behavior of Co(II) and Eu(III) on polyacrylamide/multiwalled carbon nanotube composites. Radiochemistry 61:323–330. https://doi.org/10.1134/S106636221903007X

    Article  CAS  Google Scholar 

  53. Ibrahim AG, Saleh AS, Elsharma EM et al (2019) Chitosan’g’maleic acid for effective removal of copper and nickel ions from their solutions. Int J Biol Macromol 121:1287–1294. https://doi.org/10.1016/j.ijbiomac.2018.10.107

    Article  PubMed  CAS  Google Scholar 

  54. Saleh AS, Ibrahim AG, Abdelhai F et al (2017) Preparation of poly(chitosan-acrylamide) flocculant using gamma radiation for adsorption of Cu(II) and Ni(II) ions Alaaeldine. Radiat Phys Chem 134:33–39. https://doi.org/10.1016/j.radphyschem.2017.01.019

    Article  CAS  Google Scholar 

  55. Ibrahim AG, Saleh AS, Elsharma EM et al (2018) Gamma radiation-induced preparation of poly(1-vinyl-2-pyrrolidone-co-sodium acrylate) for effective removal of Co(II), Ni(II), and Cu(II). Polym Bull 76:303–322. https://doi.org/10.1007/s00289-018-2379-x

    Article  CAS  Google Scholar 

  56. Sun J, Li Y, Liu T et al (2014) Equilibrium, kinetic and thermodynamic studies of cationic red X-Grl adsorption on graphene oxide. Environ Eng Manag J 13:2551–2559. https://doi.org/10.1016/j.materresbull.2012.04.021

    Article  CAS  Google Scholar 

  57. Suguna M, Siva Kumar N (2013) Equilibrium, kinetic and thermodynamic studies on biosorption of lead(II) and cadmium(II) from aqueous solution by polypores biomass. Indian J Chem Technol 20:57–69

    CAS  Google Scholar 

  58. Sheha RR, Metwally E (2007) Equilibrium isotherm modeling of cesium adsorption onto magnetic materials. J Hazard Mater 143:354–361. https://doi.org/10.1016/j.jhazmat.2006.09.041

    Article  PubMed  CAS  Google Scholar 

  59. Zhao J, Wang S, Zhang L et al (2018) Kinetic, isotherm, and thermodynamic studies for Ag(I) adsorption using carboxymethyl functionalized poly(glycidyl methacrylate). Polymers (Basel) 10:1090. https://doi.org/10.3390/polym10101090

    Article  CAS  Google Scholar 

  60. Haroon H, Ashfaq T, Gardazi SMH et al (2016) Equilibrium kinetic and thermodynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: batch and column reactors. Korean J Chem Eng 33:2898–2907. https://doi.org/10.1007/s11814-016-0160-0

    Article  CAS  Google Scholar 

  61. Wang C, Zhao J, Wang S et al (2019) Selective capture models and mechanisms of Pb(II) from wastewater using tannic-functionalized nickel-iron oxide nanoparticles. Colloids Surf A 570:265–273. https://doi.org/10.1016/j.colsurfa.2019.03.042

    Article  CAS  Google Scholar 

  62. Hu Q, Zhang Z (2019) Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis. J Mol Liq 277:646–648. https://doi.org/10.1016/j.molliq.2019.01.005

    Article  CAS  Google Scholar 

  63. Dada A, Olalekan A, Olatunya A, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. J Appl Chem 3:38–45

    Google Scholar 

  64. Ramachandran P, Vairamuthu R, Ponnusamy S (2011) Adsorption isotherms, kinetics, thermodynamics and desorption studies of reactive Orange16 on activated carbon derived from Ananas comosus (L.) carbon. ARPN J Eng Appl Sci 6:15–26

    Google Scholar 

  65. Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52. https://doi.org/10.1016/j.seppur.2007.07.008

    Article  CAS  Google Scholar 

  66. Repo E, Warchol JK, Agustiono T, Sillanpää MET (2010) Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem Eng J 161:73–82. https://doi.org/10.1016/j.cej.2010.04.030

    Article  CAS  Google Scholar 

  67. Rengaraj S, Moon S (2002) Kinetics of adsorption of Co(II) removal from water and wastewater by ion exchange resins. Water Res 36:1783–1793

    Article  CAS  Google Scholar 

  68. Luo W, Bai Z, Zhu Y (2017) Comparison of Co(II) adsorption by a crosslinked carboxymethyl chitosan hydrogel and resin: behaviour and mechanism. New J Chem 41:3487–3497. https://doi.org/10.1039/C6NJ03837A

    Article  CAS  Google Scholar 

  69. Navarro A, Musaev H, Serrano K, Masud M (2014) Adsorption kinetics of cobalt(II) ions onto alginate beads from aqueous solutions. Earth Sci Clim Chang 5:1–5. https://doi.org/10.4172/2157-7617.1000223

    Article  CAS  Google Scholar 

  70. Alqadami AA, Naushad M, Abdalla MA et al (2016) Adsorptive removal of toxic dye using Fe3O4 − TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies. J Chem Eng Data 61:3806–3813. https://doi.org/10.1021/acs.jced.6b00446

    Article  CAS  Google Scholar 

  71. Xu L, Zheng X, Cui H et al (2017) Equilibrium, kinetic, and thermodynamic studies on the adsorption of cadmium from aqueous solution by modified biomass ash. Bioinorg Chem Appl 2017:1–9. https://doi.org/10.1155/2017/3695604

    Article  CAS  Google Scholar 

  72. Liu LE, Liu J, Li H et al (2012) Equilibrium, kinetic, and thermodynamic studies of lead (II) biosorption on sesame leaf. BioResources 7:3555–3572

    CAS  Google Scholar 

  73. Achmad A, Kassim J, Suan TK et al (2012) Equilibrium, kinetic and thermodynamic studies on the adsorption of direct dye onto a novel green adsorbent developed from Uncaria gambir extract. J Phys Sci 23:1–13

    CAS  Google Scholar 

  74. Gök C (2017) Equilibrium, kinetic and thermodynamic studies of europium adsorption by biopolymeric composite. Int J Chem Eng Appl 8:334–339. https://doi.org/10.18178/ijcea.2017.8.5.679

    Article  CAS  Google Scholar 

  75. Huang Q, Lin X, Xiong L et al (2017) Equilibrium, kinetic and thermodynamic studies of acid soluble lignin adsorption from rice straw hydrolysate by a self-synthesized macro/mesoporous resin. RSC Adv 7:23896–23906. https://doi.org/10.1039/c7ra01058c

    Article  CAS  Google Scholar 

  76. El-Naggar IM, Zakaria ES, Ali IM et al (2012) Kinetic modeling analysis for the removal of cesium ions from aqueous solutions using polyaniline titanotungstate. Arab J Chem 5:109–119. https://doi.org/10.1016/j.arabjc.2010.09.028

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islam Mohamed Abdelmonem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelmonem, I.M., Metwally, E., Siyam, T.E. et al. Adsorption of 60Co from aqueous solution onto alginate–acrylic acid–vinylsulfonic acid/multiwalled carbon nanotubes composite. Polym. Bull. 77, 4631–4653 (2020). https://doi.org/10.1007/s00289-019-02978-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02978-7

Keywords

Navigation