Skip to main content

Advertisement

Log in

Preparation and properties of cross-linked waterborne polyurethane based on solvent-free route

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Intrinsic cross-linked waterborne polyurethane (CWPU) was successfully synthesized for the first time through solvent-free condensation polymerization, in which green castor oil (CO) was used as the cross-linking agent. The totally solvent-free process was realized by using hydrophilic polypropylene glycol as hydrophilic segment, which was synthesized by the esterification of polypropylene glycol with pyromellitic dianhydride. The effect of CO content in the soft segment of the prepared CWPU on emulsion properties was investigated by laser particle size distribution test, and the prepared CWPU emulsion showed uniform size distribution (0.117–0.275 µm) and milky white appearance after storing at ambient temperature for 6 month. Additionally, the effect of CO content in CWPU films on static mechanical properties, dynamic mechanical properties, hydrophilicity and thermal stability was also studied by tensile test, dynamic mechanical analysis, water absorption and contact angle measurement as well as thermogravimetric analysis. The prepared cross-linked CWPU films have good stability and outstanding mechanical strength (11.94–34.51 MPa), making them adequate supplement for the conventional waterborne polyurethanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pan WC et al (2015) Solvent-free processes to polyurea elastomers from diamines and diphenyl carbonate. J Polym Res 22:1–11

    Article  CAS  Google Scholar 

  2. Mannari VM et al (2006) Two-component high-solid polyurethane coating systems based on soy polyols. JCT Res 3(2):151–157

    CAS  Google Scholar 

  3. Billiani J, Wilfinger W (2002) New low-VOC acrylic polyol dispersions for two-component polyurethane coatings. Surf Coat Int Part B Coat Trans 85:191–195

    Article  CAS  Google Scholar 

  4. Gurunathan T et al (2015) Effect of reactive organoclay on physicochemical properties of vegetable oil-based waterborne polyurethane nanocomposites. RSC Adv 5:11524–11533

    Article  CAS  Google Scholar 

  5. Dvorchak MJ et al (1997) Using “High performance two-component waterborne polyurethane” wood coatings. J Coatings Technol 69:47–52

    Article  CAS  Google Scholar 

  6. Chen R et al (2014) Anionic waterborne polyurethane dispersion from a bio-based ionic segment. RSC Adv 4:35476–35483

    Article  CAS  Google Scholar 

  7. Zhang PK et al (2018) Solvent-free two-component polyurethane conjugated with crosslinkable hydroxyl-functionalized ammonium polyphosphate: curing behaviors, flammability and mechanical properties. Prog Org Coat 120:88–89

    Article  Google Scholar 

  8. Dang XG et al (2019) Biodegradable waterborne polyurethane grafted with gelatin hydrolysate via solvent-free copolymerization for potential porous scaffold material. J Mech Behav Biomed Mater 92:79–89

    Article  CAS  Google Scholar 

  9. Chai CP et al (2018) Two-component waterborne polyurethane: curing process study using dynamic in situ IR spectroscopy. Polym Testing 69:259–265

    Article  CAS  Google Scholar 

  10. Fan WH et al (2019) Room-temperature self-healing and reprocessing of Diselenide-containing water borne polyurethanes under visible light. J Appl Polym Sci 136:7

    Google Scholar 

  11. Sardon H et al (2013) Waterborne hybrid polyurethane coatings functionalized with (3-aminopropyl)triethoxysilane: adhesion properties. Prog Org Coat 76:1230–1235

    Article  CAS  Google Scholar 

  12. Lewandowski K et al (2002) Synthesis and properties of waterborne self-crosslinkable sulfo-urethane silanol dispersions. J Polym Sci, Part A: Polym Chem 40:3037–3045

    Article  CAS  Google Scholar 

  13. Llorente O et al (2016) Study of the crosslinking process of waterborne UV curable polyurethane acrylates. Prog Org Coat 99:437–442

    Article  CAS  Google Scholar 

  14. Li XB et al (2019) Solubility modelling, solvent effect and preferential solvation of allopurinol in aqueous co-solvent mixtures of ethanol, isopropanol, N,N-dimethylformamide and 1-methyl-2-pyrrolidone. J Chem Thermodyn 131:478–488

    Article  CAS  Google Scholar 

  15. Zhu YQ et al (2018) Equilibrium solubility, dissolution thermodynamics and preferential solvation of 6-methyl-2-thiouracil in aqueous co-solvent mixtures of methanol, N-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethylsulfoxide. J Chem Thermodyn 121:55–64

    Article  CAS  Google Scholar 

  16. Zhou WS et al (2019) Emulsion stability and water tolerance of cationic waterborne polyurethane with different soft segment ratios between trifunctional polyether and bifunctional polyester. Mater Res Express 6:6

    Google Scholar 

  17. Du WN et al (2018) High self-dispersibility carbon black particles prepared via hydroxylation and urethane chains encapsulation for enhancing properties of waterborne polyurethane composite films. Colloids Surf A Physicochem Eng Asp 543:46–55

    Article  CAS  Google Scholar 

  18. Qiang F et al (2018) Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states. Chem Eng J 334:2154–2166

    Article  CAS  Google Scholar 

  19. Mao HY et al (2015) Synthesis of blocked and branched waterborne polyurethanes for pigment printing applications. J Appl Polym Sci 132:46

    Google Scholar 

  20. Ma L et al (2017) Preparation and properties of poly (propylene carbonate)-based waterborne polyurethane-acrylate composite emulsion. Colloid Polym Sci 295:2299–2307

    Article  CAS  Google Scholar 

  21. Patil CK et al (2017) Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids. Prog Org Coat 106:7–95

    Google Scholar 

  22. Madbouly SA et al (2013) Rheological behavior of environmentally friendly castor oil-based waterborne polyurethane dispersions. Macromolecules 46:4606–4616

    Article  CAS  Google Scholar 

  23. Conceição M et al (2007) Thermoanalytical characterization of castor oil biodiesel. Renew Sustain Energy Rev 11:964–975

    Article  Google Scholar 

  24. Yeganeh H, Hojati-Talemi P (2007) Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly(ethylene glycol). Polym Degrad Stab 92:480–489

    Article  CAS  Google Scholar 

  25. Sun W et al (2017) Photoisomerization of waterborne polyurethane with side-chained phenylazonaphthalene group. Polym Bull 74:3109–3121

    Article  CAS  Google Scholar 

  26. Zhou J et al (2012) Synthesis and fluorescent performance of fluorescein-functionalized waterborne polyurethane. J Macromol Sci Part A Pure Appl Chem 49:8890–8896

    Google Scholar 

  27. Zheng Y et al (2015) Synthesis and photochromism properties of anionic waterborne polyurethane containing azobenzene chromophores. J Macromol Sci Part A Pure Appl Chem 52:942–949

    Article  CAS  Google Scholar 

  28. Sun H et al (2018) A facile co-solvent-free process for waterborne polyurethane preparation. Polym Bull 75:4913–4928

    Article  CAS  Google Scholar 

  29. Liu ZM, Wang JL (2018) Solvent-free and self-catalysis synthesis and properties of waterborne polyurethane. Polymer 143:129–136

    Article  Google Scholar 

  30. Ma L et al (2018) Synthesis and characterization of poly(propylene carbonate) glycol-based waterborne polyurethane with a high solid content. Prog Org Coat 122:38–44

    Article  CAS  Google Scholar 

  31. Yang GW et al (2018) A CO2-triggered hydrophobic/hydrophilic switchable polyurethane. Appl Surf Sci 456:270–275

    Article  CAS  Google Scholar 

  32. Hongxia Pan, Dajun Chen (2007) Preparation and characterization of waterborne polyurethane/attapulgite nanocomposites. Eur Polymer J 42:3766–3772

    Google Scholar 

  33. Xia Jiang et al (2007) Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ɛ-caprolactone) and poly(ethylene glycol) as soft segment. Eur Polymer J 43:1838–1846

    Article  Google Scholar 

  34. Chuyin Zhang et al (2008) Synthesis and properties of PDMS modified waterborne polyurethane-acrylic hybrid emulsion by solvent-free method. Prog Org Coat 63:238–244

    Article  Google Scholar 

  35. Ludwig Noble (1997) Waterborne polyurethanes. Prog Org Coat 32:131–136

    Article  Google Scholar 

  36. Hsuchiang Kuan (2005) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol 65:1703–1710

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxin Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Liu, Z., Wu, B. et al. Preparation and properties of cross-linked waterborne polyurethane based on solvent-free route. Polym. Bull. 77, 3263–3275 (2020). https://doi.org/10.1007/s00289-019-02918-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02918-5

Keywords

Navigation