Skip to main content
Log in

Superparamagnetic nanocomposites: prepared by embedding Fe3O4@graphene oxide in chiral poly(amide–imide)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The exploration of magnetic polymer nanocomposites is of great importance owing to their unique properties and promising applications. Herein, for the first time, the ternary superparamagnetic nanocomposites of Fe3O4 nanoparticles, graphene oxide (GO) and optically active poly(amide–imide) (Fe3O4@GO/PAI) were prepared and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The preparation was attained via a three-stage process consisting of a facile one-pot in situ growth of Fe3O4 on GO, resulted in the preparation of the magnetic Fe3O4@GO, modification of Fe3O4@GO by 3-aminopropyltriethoxy silane to introduce amino groups on its surface and subsequently its compositing by various levels of 4.0, 6.0, 8.0, and 10.0 wt% with chiral PAI through ultrasonic irradiation afforded the magnetic nanocomposites (NanoFe3O4@GO/PAI). The SEM analysis showed Fe3O4 nanoparticles with 30 nm size were successfully decorated the GO nanosheets. The TGA analysis established the expected thermal stability for Fe3O4@GO/PAI nanocomposites. Furthermore, incorporation of Fe3O4@GO in polymer matrix improved the mechanical properties substantially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514–3520

    Article  CAS  Google Scholar 

  2. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053

    Article  CAS  Google Scholar 

  3. Montes-Navajas P, Asenjo NG, Santamaria R, Menendez R, Corma A, Garcia H (2013) Surface area measurement of graphene oxide in aqueous solutions. Langmuir 29:13443–13448

    Article  CAS  Google Scholar 

  4. Majumdar B, Sarma D, Bhattacharya T, Sarma TK (2017) Graphene oxide as metal-free catalyst in oxidative dehydrogenative C–N coupling leading to α-Ketoamides: importance of dual catalytic activity. ACS Sustain Chem Eng 5:9286–9294

    Article  CAS  Google Scholar 

  5. Klimova K, Pumera M, Luxa J, Jankovsky O, Sedmidubsky D, Matejkova S, Sofer Z (2016) Graphene oxide sorption capacity toward elements over the whole periodic table: a comparative study. J Phys Chem C 120:24203–24212

    Article  CAS  Google Scholar 

  6. Seabra AB, Paula AJ, de Lima R, Alves OL, Duran N (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27:159–168

    Article  CAS  Google Scholar 

  7. Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211–2224

    Article  CAS  Google Scholar 

  8. Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J (2010) Graphene and graphene oxide sheets at interfaces. J Am Chem Soc 132:8180–8186

    Article  CAS  Google Scholar 

  9. Basu H, Singhal RK, Pimple MV, Saha S (2018) Graphene oxide encapsulated in alginate beads for enhanced sorption of uranium from different aquatic environments. J Environ Chem Eng 6:1625–1633

    Article  CAS  Google Scholar 

  10. Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9:9243–9257

    Article  CAS  Google Scholar 

  11. Down MP, Rowley-Neale SJ, Smith GC, Banks CE (2018) Fabrication of graphene oxide supercapacitor devices. ACS Appl Energy Mater 1:707–714

    Article  CAS  Google Scholar 

  12. Yadav R, Subhash A, Chemmenchery N, Kandasubramanian B (2018) Graphene and graphene oxide for fuel cell technology. Ind Eng Chem Res 57:9333–9350

    Article  CAS  Google Scholar 

  13. Su C, Tandiana R, Balapanuru J, Tang W, Pareek K, Nai CT, Hayashi T, Loh KP (2015) Tandem catalysis of amines using porous graphene oxide. J Am Chem Soc 137:685–690

    Article  CAS  Google Scholar 

  14. Xiao Y, Liu J, Xie K, Wang W, Fang Y (2017) Aerobic oxidation of cyclohexane catalyzed by graphene oxide: effects of surface structure and functionalization. Mol Catal 431:1–8

    Article  CAS  Google Scholar 

  15. Huang Y, Yang HY, Ai Y (2015) DNA Single-base mismatch study using graphene oxide nanosheets-based fluorometric biosensors. Anal Chem 87:9132–9136

    Article  CAS  Google Scholar 

  16. Chiu NF, Huang TY, Lai HC, Liu KC (2014) Graphene oxide-based SPR biosensor chip for immunoassay applications. Nanoscale Res Lett 9:445–451

    Article  CAS  Google Scholar 

  17. Ouyang K, Zhu C, Zhao Y, Wang L, Xie S, Wang Q (2015) Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids. Appl Surf Sci 355:562–569

    Article  CAS  Google Scholar 

  18. Sharafeldin M, Bishop GW, Bhakta S, El-Sawy A, Suib SL, Rusling JF (2017) Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins. Biosens Bioelectron 91:359–366

    Article  CAS  Google Scholar 

  19. Muthukrishnaraj A, Manokaran J, Vanitha M, Thiruvengadaravi KV, Baskaralingam P, Balasubramaniana N (2015) Equilibrium, kinetic and thermodynamic studies for the removal of Zn(II) and Ni(II) ions using magnetically recoverable graphene/Fe3O4 composite. Desalination Water Treat 56:2485–2501

    Article  CAS  Google Scholar 

  20. Ali SS, Tang X, Alavi S, Faubion J (2011) Structure and physical properties of starch/poly vinyl alcohol/sodium montmorillonite nanocomposite films. J Agric Food Chem 59:12384–12395

    Article  CAS  Google Scholar 

  21. Zhong W, Liu P, Tang Z, Wu X, Qiu J (2012) Facile approach for superparamagnetic CNT-Fe3O4/polystyrene tricomponent nanocomposite via synergetic dispersion. Ind Eng Chem Res 51:12017–12024

    Article  CAS  Google Scholar 

  22. Huang YH, Chen MHC, Lee BH, Hsieh KH, Tu YK, Lin JJ, Chang CH (2014) Evenly distributed thin-film Ag coating on stainless plate by tricomponent Ag/Silicate/PU with antimicrobial and biocompatible properties. ACS Appl Mater Interfaces 6:20324–20333

    Article  CAS  Google Scholar 

  23. Liu P, Zhong W, Wu X, Qiu J (2013) Facile synergetic dispersion approach for magnetic Fe3O4@graphene oxide/polystyrene tri-component nanocomposite via radical bulk polymerization. Chem Eng J 219:10–18

    Article  CAS  Google Scholar 

  24. Zhong W, Liu P, Wang A (2012) Facile approach to magnetic attapulgite-Fe3O4/polystyrene tri-component nanocomposite. Mater Lett 85:11–13

    Article  CAS  Google Scholar 

  25. Liu X, Yin J, Kong Y, Chen M, Feng Y, Yan K, Li X, Su B, Lei Q (2013) Electrical and mechanical property study on three-component polyimide nanocomposite films with titanium dioxide and montmorillonite. Thin Solid Films 544:352–356

    Article  CAS  Google Scholar 

  26. Huang Y, Xiao C, Huang Q, Liu H, Hao J, Song L (2018) Magnetic field induced orderly arrangement of Fe3O4/GO composite particles for preparation of Fe3O4/GO/PVDF membrane. J Membr Sci 548:184–193

    Article  CAS  Google Scholar 

  27. Abdah MAAM, Razali NSM, Lim PT, Kulandaivalu S, Sulaiman Y (2018) One-step potentiostatic electrodeposition of polypyrrole/graphene oxide/multi-walled carbon nanotubes ternary nanocomposite for supercapacitor. Mater Chem Phys 219:120–128

    Article  CAS  Google Scholar 

  28. Mallakpour S, Rafiee Z (2011) New developments in polymer science and technology using combination of ionic liquids and microwave irradiation. Prog Polym Sci 36:1754–1765

    Article  CAS  Google Scholar 

  29. Kim K, Lee J, Lee S, Yoo T, Han H (2018) Synthesis of new flexible diamine for applications in transparent poly(amide–imide) thin films with low residual stress. Prog Org Coat 117:130–140

    Article  CAS  Google Scholar 

  30. Mallakpour SE, Hajipour AR, Habibi S (2002) Microwave-assisted synthesis of new optically active poly(ester-imide)s containing N,N-(pyromellitoyl)-bis-l-phenylalanine moieties. J Appl Polym Sci 86:2211–2216

    Article  CAS  Google Scholar 

  31. Sun L, Yu H, Fugetsu B (2012) Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. J Hazard Mater 203:101–110

    Article  CAS  Google Scholar 

  32. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, vol 3. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

Funding was provided by Yasouj University (Grant No. Gryu-89131307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Rafiee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, F., Rafiee, Z. Superparamagnetic nanocomposites: prepared by embedding Fe3O4@graphene oxide in chiral poly(amide–imide). Polym. Bull. 77, 2059–2071 (2020). https://doi.org/10.1007/s00289-019-02859-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02859-z

Keywords

Navigation