Skip to main content
Log in

Phenylvinilbisquinolines as fluorescent markers in functionalized polypropylene films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, polypropylene films (PP) and maleic anhydride graft polypropylene (PPgMA) at different concentrations of a photoluminescent dye 2,2′-(1,4-phenylenedivinylene) bisquinoline (M1) were prepared by solvent casting. The fluorescence spectrum of M1-dye showed a maximum peak at 424 nm in xylene which corresponds to the blue region of the electromagnetic spectrum. In the PP films, new peaks at 505 and 535 nm appeared that can be ascribed to interchain species formed by intermolecular ππ stacking and likely hydrogen-bonding interaction as found for other quinaldine oligomers. By thermal annealing of the film heating at 130 °C during 60 min, it was possible to overcome these interactions. The results show that thermal annealing of films is able to disrupt M1-aggregates as a consequence of macromolecular reorganization promoted by heating. The emission responses detected in PP/PPgMA/M1 films are associated with a small-dispersed M1-aggregates associated with a polar character between maleic anhydride and M1. The fluorescence changes of M1 in the polymer films indicate the possibility of using this bisquinoline-dye as an optical sensor for detecting structural modification of thermoplastic polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Calvino C, Neumann L, Weder C, Schrettl S (2017) Approaches to polymeric mechanochromic materials. J Polym Sci, Part A: Polym Chem 55:640–652. https://doi.org/10.1002/pola.28445

    Article  CAS  Google Scholar 

  2. Pucci A, Ruggeri G (2011) Mechanochromic polymer blends. J Mater Chem 21:8282–8291. https://doi.org/10.1039/c0jm03653f

    Article  CAS  Google Scholar 

  3. Pucci A, Donati F, Ruggeri G, Ciardelli F (2009) Linear low density polyethylene (LLDPE) films containing perylene dyes as stress-strain luminescent indicators. e-Polymers 9:058. https://doi.org/10.1515/epoly.2009.9.1.716

    Article  Google Scholar 

  4. Lott J, Weder C (2010) Luminescent mechanochromic sensors based on poly(vinylidene fluoride) and excimer-forming p-phenylene vinylene dyes. Macromol Chem Phys 211:28–34. https://doi.org/10.1002/macp.200900476

    Article  CAS  Google Scholar 

  5. Lavrenova A, Holtz A, Simon YC, Weder C (2016) Deformation-induced color changes in melt-processed polyamide 12 blends. Macromol Mater Eng 301:549–554. https://doi.org/10.1002/mame.201500403

    Article  CAS  Google Scholar 

  6. Crenshaw BR, Weder C (2003) Deformation-induced color changes in melt-processed photoluminescent polymer blends. Chem Mater 15:4717–4724. https://doi.org/10.1021/cm034447t

    Article  CAS  Google Scholar 

  7. Crenshaw BR, Burnworth M, Khariwala D, Hiltner A, Mather PT, Simha R, Weder C (2007) Deformation-induced color changes in mechanochromic polyethylene blends. Macromolecules 40(7):2400–2408. https://doi.org/10.1021/ma062936j

    Article  CAS  Google Scholar 

  8. Pucci A, Bertoldo M, Bronco S (2005) Luminescent Bis(benzoxazolyl)stilbene as a molecular probe for poly(propylene) film deformation. Macromol Rapid Commun 26:1043–1048. https://doi.org/10.1002/marc.200500227

    Article  CAS  Google Scholar 

  9. Pucci A, Tirelli N, Ruggeri G, Ciardelli F (2005) Absorption and emission dichroism of polyethylene films with molecularly dispersed push-pull terthiophenes. Macromol Chem Phys 206:102–111. https://doi.org/10.1002/macp.200400171

    Article  CAS  Google Scholar 

  10. Pucci A, Cappelli C, Bronco S, Ruggeri G (2006) Dichroic properties of bis(benzoxazolyl)stilbene and bis(benzoxazolyl)thiophene dispersed into oriented polyethylene films: a combined experimental and density functional theory approach. J Phys Chem B 110:3127–3134. https://doi.org/10.1021/jp056325p

    Article  PubMed  CAS  Google Scholar 

  11. Cardelli A, Ricci L, Ruggeri G, Borsacchi S, Geppi M (2011) Optical properties of a polyethylene dispersion with a luminescent silica prepared by surface grafting of a perylene derivative. Eur Polymer J 47:1589–1600. https://doi.org/10.1016/j.eurpolymj.2011.05.006

    Article  CAS  Google Scholar 

  12. Cellini F, Zhou L, Khapli S, Peterson SD, Porfiri M (2016) Large deformations and fluorescence response of mechanochromic polyurethane sensors. Mech Mater 93(145):162. https://doi.org/10.1016/j.mechmat.2015.10.013

    Article  Google Scholar 

  13. Bao S, Li J, Lee KI, Shao S, Hao J, Fei B, Xin JH (2013) Reversible mechanochromism of a luminescent elastomer. ACS Appl Mater Interfaces 5:4625–4631. https://doi.org/10.1021/am4013648

    Article  PubMed  CAS  Google Scholar 

  14. Pucci A, Signori F, Bizzarri R, Bronco S, Ruggeri G, Ciardelli F (2010) Threshold temperature luminescent indicators from biodegradable poly(lactic acid)/poly(butylene succinate) blends. J Mater Chem 20:5843. https://doi.org/10.1039/C0JM00057D

    Article  CAS  Google Scholar 

  15. Imato K, Natterodt JC, Sapkota J, Goseki R, Weder C, Takahara A, Otsuka H (2017) Dynamic covalent diarylbibenzofuranone-modified nanocellulose: mechanochromic behaviour and application in self-healing polymer composites. Polymer Chemistry 8:2115–2122. https://doi.org/10.1039/c7py00074j

    Article  CAS  Google Scholar 

  16. Calvino C, Guha A, Weder C, Schrettl S (2018) Self-calibrating mechanochromic fluorescent polymers based on encapsulated excimer-forming dyes. Adv Mater 30:1704603. https://doi.org/10.1002/adma.201704603

    Article  CAS  Google Scholar 

  17. Lavrenova A, Balkenende DWR, Sagara Y, Schrettl S, Simon YC, Weder C (2017) Mechano- and thermoresponsive photoluminescent supramolecular polymer. J Am Chem Soc 139:4302–4305. https://doi.org/10.1021/jacs.7b00342

    Article  PubMed  CAS  Google Scholar 

  18. Fleischmann C, Lievenbrück M, Ritter H (2015) Polymers and dyes: developments and applications. Polymers 7:717–746. https://doi.org/10.3390/polym7040717

    Article  CAS  Google Scholar 

  19. Maddah HA (2016) Polypropylene as a promising plastic: a review. Am J Polym Sci 6:1–11. https://doi.org/10.5923/j.ajps.20160601.01

    Article  CAS  Google Scholar 

  20. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2016) A decision-making model for selecting the most appropriate natural fiber: polypropylene-based composites for automotive applications. J Compos Mater 50:543–556. https://doi.org/10.1177/0021998315577233

    Article  Google Scholar 

  21. Zych A, Verdelli A, Soliman M, Pinalli R, Pedrini A, Vachon J, Dalcanale E (2019) Strain-reporting pyrene-grafted polyethylene. Eur Polym J 111:69–73. https://doi.org/10.1016/j.eurpolymj.2018.12.016

    Article  CAS  Google Scholar 

  22. Liang F, Chen J, Cheng Y, Wang L, Ma D, Jing X, Wang F (2003) Synthesis, characterization, photoluminescent and electroluminescent properties of new conjugated 2,2′-(arylenedivinylene)bis-8-substituted quinolines. J Mater Chem 13:1392–1399. https://doi.org/10.1039/b210408c

    Article  CAS  Google Scholar 

  23. Gutiérrez AR et al (2010) Síntesis y mecanosíntesis de fenilendivinilenbisquinolinas para la optoelectrónica. Superficies y Vacío 23:73–79. http://smcsyv.fis.cinvestav.mx/supyvac/23_S/SV23S7310.pdf

    Google Scholar 

  24. Gutiérrez AR et al (2015) Mechanosynthesis of a phenylenedivinylidenebisquinoline. Optical, morphological and electroluminescence properties. J Mol Struct 1086:138–145. https://doi.org/10.1016/j.molstruc.2015.01.019

    Article  CAS  Google Scholar 

  25. Gránásy L, Pusztai T, Douglas JF (2013) Insights into polymer crystallization from phase-field theory. In: Palsule S (ed) Encyclopedia of polymers and composites. Springer, Berlin, pp 1–35. https://doi.org/10.1007/978-3-642-37179-0_30-1

    Chapter  Google Scholar 

  26. Vazquez-Rodriguez S, Sanchez-Valdes S, Rodriguez-Gonzalez FJ, Gonzalez-Cantu MC (2007) Influence of low-molecular-weight diamines in the direct imidation of poly(propylene)-grafted maleic anhydride by melt reaction. Macromol Mater Eng 292:1012. https://doi.org/10.1002/mame.200700086

    Article  CAS  Google Scholar 

  27. Liu W, Cheng L, Liu X, Liu C, Chi X, Li S (2018) Correlation between morphology and electrical breakdown strength of the polypropylene/maleic anhydride grafted polypropylene/nano-ZrO2 ternary system. J Appl Polym Sci 135:46842. https://doi.org/10.1002/app.46842

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. R. Vázquez-Velázquez thanks to CONACYT-Mexico for Doctoral Fellowship. The authors acknowledge CONACYT for the financial support through CB-240271 project. The authors are thankful to Dra. Sugeheidy Carranza-Bernal (UANL) for FTIR analysis, K. Pinedo-Arriaga for her support during microscopy optic observations and L.E. Roman-Quirino for DSC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Vazquez-Rodriguez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez-Velazquez, A.R., Vazquez-Garcia, R.Á., Hernandez-Bucio, G. et al. Phenylvinilbisquinolines as fluorescent markers in functionalized polypropylene films. Polym. Bull. 77, 1781–1792 (2020). https://doi.org/10.1007/s00289-019-02828-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02828-6

Keywords

Navigation