Skip to main content
Log in

Synthesis and characterization of radiation cross-linked PVP hydrogels and investigation of its potential as an antileishmanial drug carrier

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The aim of this study was to elaborate a suitable hydrogel to be used as drug carrier for antileishmanial treatment. Therefore, a PVP hydrogel was synthesized using gamma radiation technique. In the first step, PVP, agar and PEG concentrations were modified as a function of dose rate. Then, established polymers were characterized using FTIR, solid-state 13C NMR and TGA analyses. After that, rheological measurements followed to determine elastic and viscous modulus. Based on these techniques, it was found that synthesized PVP–hydrogels have the structure of a semi-interpenetrated network (SIPN). The sample containing 3% of PEG was selected to test its potential as antileishmanial drug carrier because it had the elastic modulus that fits more the application as wound dressing. As antileishmanial drug carrier, it has been shown that in the presence of hydrogel, the activity of conventional drug (Amphotericin B) on Leishmania promastigotes was markedly improved with an increase in selectivity index from 10.54 to 56.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheon S, Keun I, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective ☆. Adv Drug Deliv Rev 65:17–20. https://doi.org/10.1016/j.addr.2012.07.015

    Article  CAS  Google Scholar 

  2. Giri TK, Thakur A, Alexander A, Badwaik H, Tripathi DK (2012) Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B 2:439–449. https://doi.org/10.1016/j.apsb.2012.07.004

    Article  CAS  Google Scholar 

  3. Seok Y, Cho K, Jong H, Chang S, Lee H, Hyun J, Koh W (2016) Highly conductive and hydrated PEG-based hydrogels for the potential application of a tissue engineering scaffold. React Funct Polym 109:15–22. https://doi.org/10.1016/j.reactfunctpolym.2016.09.003

    Article  CAS  Google Scholar 

  4. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16:371–383. https://doi.org/10.1089/ten.teb.2009.0639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oprea A-M, Vasile C, Dumitriu RP (2009) A drug delivery system based on stimuli-responsive alginate/N-isopropylacryl amide hydrogel. Cellul Chem Technol 43:251–262

    Google Scholar 

  6. El-Sherbiny IM (2010) Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs: preparation and in vitro assessment. Carbohydr Polym 80:1125–1136. https://doi.org/10.1016/j.carbpol.2010.01.034

    Article  CAS  Google Scholar 

  7. Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77:1–9. https://doi.org/10.1016/j.carbpol.2009.01.016

    Article  CAS  Google Scholar 

  8. Tran VB, Sung YS, Copley K, Radke CJ (2012) Effects of aqueous polymeric surfactants on silicone-hydrogel soft- contact-lens wettability and bacterial adhesion of Pseudomonas aeruginosa. Contact Lens Anterior Eye 35:155–162. https://doi.org/10.1016/j.clae.2012.02.006

    Article  PubMed  Google Scholar 

  9. Kirchhof S, Goepferich AM, Brandl FP (2015) Hydrogels in ophthalmic applications. Eur J Pharm Biopharm 95:227–238. https://doi.org/10.1016/j.ejpb.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  10. Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45:5711–5735. https://doi.org/10.1007/s10853-010-4780-1

    Article  CAS  Google Scholar 

  11. Özer A, Özer D, Özer A (2004) The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters. Process Biochem 39:2183–2191. https://doi.org/10.1016/j.procbio.2003.11.008

    Article  CAS  Google Scholar 

  12. Li RJW, Zhao H, Teasdale PR (2002) Preparation and characterisation of a poly(acrylamidoglycolic acid-co-acrylamide) hydrogel for selective binding of Cu2+ and application to diffusive gradients in thin films measurements. Polymer (Guildf) 43:4803–4809. https://doi.org/10.1016/S0032-3861(02)00309-9

    Article  CAS  Google Scholar 

  13. Ben Ammar NE, Saied T, Mejri A, Hosni F, Mejri A, Mnif A, Hamzaoui AH (2016) Study of agar proportions effect on a gamma ray synthesized hydrogel. J Mater Sci Eng A. https://doi.org/10.17265/2161-6213/2016.3-4.008

    Article  Google Scholar 

  14. Wang X, Wang Y, Hou H, Wang J, Hao C (2017) Ultrasonic method to synthesize glucan-g-poly(acrylic acid)/sodium lignosulfonate hydrogels and studies of their adsorption of Cu2+ from aqueous solution. ACS Sustain Chem Eng 5:6438–6446

    Article  CAS  Google Scholar 

  15. Wang X, Wang Y, He S, Hou H, Hao C (2017) Ultrasonic-assisted synthesis of superabsorbent hydrogels based on sodium lignosulfonate and their adsorption properties for Ni2. Ultrason Sonochem 40:221–229. https://doi.org/10.1016/j.ultsonch.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  16. Senna AM, Braga do Carmo J, Santana da Silva JM, Botaro VR (2015) Synthesis, characterization and application of hydrogel derived from cellulose acetate as a substrate for slow-release NPK fertilizer and water retention in soil. J Environ Chem Eng 3:996–1002. https://doi.org/10.1016/j.jece.2015.03.008

    Article  CAS  Google Scholar 

  17. Narjary B, Aggarwal P, Singh A, Chakraborty D, Singh R (2012) Water availability in different soils in relation to hydrogel application. Geoderma 187–188:94–101. https://doi.org/10.1016/j.geoderma.2012.03.002

    Article  CAS  Google Scholar 

  18. Koupai JA, Eslamian SS, Kazemi JA (2008) Enhancing the available water content in unsaturated soil zone using hydrogel, to improve plant growth indices. Ecohydrol Hydrobiol 8(n.d.):67–75. https://doi.org/10.2478/v10104-009-0005-0

    Article  Google Scholar 

  19. Yahia Lh (2015) History and applications of hydrogels. J Biomed Sci 4:1–23. https://doi.org/10.4172/2254-609X.100013

    Article  Google Scholar 

  20. Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233. https://doi.org/10.1016/j.jmbbm.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Zivanovic S, Davidson PM, Kit K (2010) Characterization and comparison of chitosan/PVP and chitosan/PEO blend films. Carbohydr Polym 79:786–791. https://doi.org/10.1016/j.carbpol.2009.09.028

    Article  CAS  Google Scholar 

  22. Gulrez SKH, Al-assaf S, Phillips GO (2011) Hydrogels : methods of preparation, characterisation and applications In: Capri A (ed) Prog Mol Environ Bioeng—from Anal Model Technol Appl In Tech, pp 117–150

  23. Lug AB, Malmonge M (2002) Rheological behaviour of irradiated wound dressing poly(vinyl pyrrolidone) hydrogels. Radiat Phys Chem 63:543–546

    Article  Google Scholar 

  24. Hatice Kaplan Can (2005) Synthesis of persulfate containing poly(N-vinyl-2-pyrrolidone) (PVP) hydrogels in aqueous solutions by gamma-induced radiation. Radiat Phys Chem 72:703–710. https://doi.org/10.1016/j.radphyschem.2004.04.028

    Article  CAS  Google Scholar 

  25. Carneiro G, Aguiar MG, Fernandes AP, Ferreira LAM (2012) Drug delivery systems for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv 9:1083–1097. https://doi.org/10.1517/17425247.2012.701204

    Article  CAS  PubMed  Google Scholar 

  26. Kadlubowski S (2014) Radiation-induced synthesis of nanogels based on poly(N-vinyl-2-pyrrolidone)—a review. Radiat Phys Chem 102:29–39. https://doi.org/10.1016/j.radphyschem.2014.04.016

    Article  CAS  Google Scholar 

  27. Saha P, Mukhopadhyay D, Chatterjee M (2011) Immunomodulation by chemotherapeutic agents against leishmaniasis. Int Immunopharmacol 11:1668–1679. https://doi.org/10.1016/j.intimp.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  28. Monge-Maillo B, López-Vélez R (2013) Therapeutic options for old world cutaneous leishmaniasis and new world cutaneous and mucocutaneous leishmaniasis. Drugs 73:1889–1920. https://doi.org/10.1007/s40265-013-0132-1

    Article  CAS  PubMed  Google Scholar 

  29. Van Bocxlaer K, Yardley V, Murdan S, Croft SL (2016) Drug permeation and barrier damage in Leishmania-infected mouse skin. J Antimicrob Chemother 71:1578–1585. https://doi.org/10.1093/jac/dkw012

    Article  CAS  PubMed  Google Scholar 

  30. Clark L, ChAmpBerlain SR, Sahakian BJ (2009) Neurocognitive mechanisms in depression: implications for treatment. Annu Rev Neurosci 32:57–74. https://doi.org/10.1081/DDC-120030423

    Article  CAS  PubMed  Google Scholar 

  31. Schwartz J, Moreno E, Fernández C, Navarro-Blasco I, Nguewa PA, Palop JA, Irache JM, Sanmartín C, Espuelas S (2014) Topical treatment of L. major infected BALB/c mice with a novel diselenide chitosan hydrogel formulation. Eur J Pharm Sci 62:309–316. https://doi.org/10.1016/j.ejps.2014.06.010

    Article  CAS  PubMed  Google Scholar 

  32. Higa OZ, Rogero SO, Machado LDB, Mathor MB, Lugão AB (1999) Biocompatibility study for PVP wound dressing obtained in different conditions. Radiat Phys Chem 55:705–707. https://doi.org/10.1016/S0969-806X(99)00215-7

    Article  CAS  Google Scholar 

  33. Ben Ammar NE, Saied T, Barbouche M, Hosni F, Hamzaoui AH, Şen M (2017) A comparative study between three different methods of hydrogel network characterization: effect of composition on the crosslinking properties using sol–gel, rheological and mechanical analyses. Polym Bull. https://doi.org/10.1007/s00289-017-2239-0

    Article  Google Scholar 

  34. Farah K, Jerbi T, Kuntz F, Kovacs A (2006) Dose measurements for characterization of a semi-industrial cobalt-60 gamma-irradiation facility. Radiat Meas 41:201–208. https://doi.org/10.1016/j.radmeas.2005.03.003

    Article  CAS  Google Scholar 

  35. Gonz P, Mar C, Rodr I, Jose M, Manuel GDS (2005) In vitro activity of C 20-diterpenoid alkaloid derivatives in promastigotes and intracellular amastigotes of Leishmania infantum. Int J Antimicrob Agents 25:136–141

    Article  Google Scholar 

  36. Bodley AL, Shapiro TA (1995) Molecular and cytotoxic effects of camptothecin, a topoisomerase I inhibitor, on trypanosomes and Leishmania. Proc Natl Acad Sci 92:3726–3730. https://doi.org/10.1073/pnas.92.9.3726

    Article  CAS  PubMed  Google Scholar 

  37. Osorio E, Jaime G, Jim N, Alzate F, Ruiz G, Guti D, Antonio M, Gim A, Robledo S (2007) Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae 111:630–635. https://doi.org/10.1016/j.jep.2007.01.015

    Article  Google Scholar 

  38. Essid R, Rahali FZ, Msaada K, Sghair I, Hammami M, Bouratbine A, Aoun K, Limam F (2015) Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Ind Crops Prod 77:795–802. https://doi.org/10.1016/j.indcrop.2015.09.049

    Article  CAS  Google Scholar 

  39. Camacho M, Elisa M, Fajardo C, Niño A, Morales P, Campos H (2008) Leishmania amazonensis infection may affect the ability of the host macrophage to be activated by altering their outward potassium currents. Exp Parasitol 120:50–56. https://doi.org/10.1016/j.exppara.2008.04.019

    Article  CAS  PubMed  Google Scholar 

  40. An J, Weaver A, Kim B, Barkatt A, Poster D, Vreeland WN, Silverman J, Al-sheikhly M (2011) Radiation-induced synthesis of poly(vinylpyrrolidone) nanogel. Polymer (Guildf) 52:5746–5755. https://doi.org/10.1016/j.polymer.2011.09.056

    Article  CAS  Google Scholar 

  41. Abellan M, Ayadh M, Feulvarch E, Zahouani H (2015) Caractérisation des paramètres mécaniques de la peau humaine jeune in vivo par essais d’ indentation sans contact Abstract :, in: 22 Ème Congrès Français Mécanique

Download references

Acknowledgements

Biological tests of the hydrogel were carried out in the Laboratory of Bioactive Substances at the Center of Biotechnology of Borj Cedria of Tunisia, under the responsibility of Professor Ferid Limam to whom we are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour Elhouda Ben Ammar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Ammar, N.E., Essid, R., Saied, T. et al. Synthesis and characterization of radiation cross-linked PVP hydrogels and investigation of its potential as an antileishmanial drug carrier. Polym. Bull. 77, 1343–1357 (2020). https://doi.org/10.1007/s00289-019-02803-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02803-1

Keywords

Navigation