Skip to main content

Advertisement

Log in

Preparation and electrochemical characterization of carbon dots/polyaniline composite materials

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Conductive polymers have emerged as a kind of promising electrode material for supercapacitor due to their unique structure, large theoretical specific capacitance, good electrical conductivity, environmental stability, and low cost. Carbon dots (CDs) have been demonstrated to effectively promote fast charge tunneling in optoelectronic devices. To improve the capacitance characteristics of PANI, in this paper, we report the preparation of CDs/polyaniline (CDs/PANI) composites by in situ polymerization of aniline in the presence of CDs. The composite materials have been extensively characterized by using XRD, FTIR, UV/Vis, SEM, and TEM, with results clearly indicating the successful incorporation of CDs into PANI polymers. Electrochemical characterization proves that the addition of CDs into PANI notably enhances the specific capacitance of PANI-based electrodes. Particularly, 6 wt% of CDs shows the greatest enhancement on specific capacitance, which has an average value of 1070 F/g compared to 460 F/g of pure PANI in three-electrode testing. Our findings provide valuable clues for future design and fabrication of electrode using conductive polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marchioni F, Yang J, Walker W, Wudi F (2006) A low band gap conjugated polymer for supercapacitor devices. J Phys Chem B 110:22202

    CAS  PubMed  Google Scholar 

  2. Chen LZ, Liu CH, Liu K, Meng CZ, Hu CH, Wang JP, Fan SS (2011) High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. ACS Nano 5:1588

    CAS  PubMed  Google Scholar 

  3. He XJ, Li XJ, Ma H, Han JF, Zhang H, Yu C, Xiao N, Qiu JS (2017) ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. J Power Sources 340:183

    CAS  Google Scholar 

  4. Gao ZY, Wang F, Chang JL, Wu DP, Wang XR, Wang X, Xu F, Gao SY, Jiang K (2014) Hierarchically porous carbons with graphene incorporation for efficient supercapacitors. Electrochim Acta 33:325

    Google Scholar 

  5. Liew SY, Thielemans W, Walsh DA (2010) Electrochemical capacitance of nanocomposite polypyrrole/cellulose films. J Phys Chem C 114:17926

    CAS  Google Scholar 

  6. Yang XQ, Wu DC, Chen XM, Fu RW (2010) Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J Phys Chem C 114:8581

    CAS  Google Scholar 

  7. Wang K, Huang JY, Wei ZX (2010) Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C 114:8062

    CAS  Google Scholar 

  8. Li GR, Feng ZP, Zhong JH, Wang ZL, Tong YX (2010) Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43:2178

    CAS  Google Scholar 

  9. Chen L, Zhang XG, Yuan CZ, Chen SY (2009) Electrochemical properties of poly (3, 4-ethylenedioxythiophene)/manganese oxide synthesized by interfacial polymerization. Acta Phys Chim Sin 25:304

    CAS  Google Scholar 

  10. Yang LF, Zhou S, Yang WH (2015) Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor. Electrochim Acta 153:76

    CAS  Google Scholar 

  11. Mao DW, Tian YH (2007) PANI/AC composite for electric double layer capacitors. Chin J Power Sources 31:614

    CAS  Google Scholar 

  12. Wang J, Xu YL, Chen X, Sun XF (2007) Capacitance properties of single wall carbon nanotube/polypyrrole composite films. Compos Sci Technol 67:2981

    CAS  Google Scholar 

  13. Zhang K, Zhang LL, Zhao XS, Wu JS (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392

    CAS  Google Scholar 

  14. Lü JY, Lin ZD, Zeng W (2008) The preparation of complex RuO2/polyaniline electrode material and characterization of electrochemical capability. J Wuhan Inst Technol 30:62

    Google Scholar 

  15. Yang YC, Wang SL (2008) Intrinsic yellow light phosphor: an organic—inorganic hybrid gallium oxalatophosphate with hexameric octahedral Ga6 (OH) 4O26 Cluster. J Am Chem Soc 130:1146

    CAS  PubMed  Google Scholar 

  16. Yuan CZ, Su LH, Bo G, Zhang X (2008) Enhanced electrochemical stability and charge storage of MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes. Electrochim Acta 53:7039–7047

    CAS  Google Scholar 

  17. Zou WY, Wang W, He BL, Sun ML, Yin YS (2010) Supercapacitive properties of hybrid films of manganese dioxide and polyaniline based on active carbon in organic electrolyte. J Power Sources 195:7489

    CAS  Google Scholar 

  18. Zhang HY, Hu ZA, Zhang FH, Liang PJ, Zhang YJ, Yang YY, Zhang ZY, Wu HY (2012) Synthesis of polypyrolle/reduced graphene oxide and it's capacitive properties. Chin J Appl Chem 9:674

    Google Scholar 

  19. Wang HL, Hao QL, Yang XJ, Lu LD, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11:1158

    CAS  Google Scholar 

  20. Dai WQ, Ma L, Gan MY, Wang SY, Sun XW, Wang HH, Zhou T, Wang HN (2016) Fabrication of sandwich nanostructure graphene/polyaniline hollow spheres composite and its applications as electrode materials for supercapacitor. Mater Res Bull 76:344

    CAS  Google Scholar 

  21. Wu WL, Yang LQ, Chen SL, Shao YM, Jing LY, Zhao GH, Wei H (2015) Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors. Rsc Adv 5:91645

    CAS  Google Scholar 

  22. Shayeh JS, Ehsani A, Ganjali MR, Norouzi P, Jaleh B (2015) Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors. Appl Surf Sci 353:594

    Google Scholar 

  23. Zhou JY, Zhao H, Mu XM, Chen JY, Zhang P, Wang YL, He YM, Zhang ZX, Pan XJ, Xie EQ (2015) Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@ MnO2 perfect core–shell nanostructures for high-performance flexible supercapacitors. Nanoscale 7:14697

    CAS  PubMed  Google Scholar 

  24. Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736

    CAS  PubMed  Google Scholar 

  25. Lim SY, Shen W, Gao ZQ (2014) Carbon quantum dots and their applications. Chem Soc Rev 44:362

    PubMed  Google Scholar 

  26. Lecroy GE, Sonkar SK, Yang F, Veca M, Wang P, Tackett KN, Yu JJ, Vasile E, Qian HJ, Liu Y, Luo P, Sun YP (2014) Toward structurally defined carbon dots as ultracompact fluorescent probes. ACS Nano 8:4522–4529

    CAS  PubMed  Google Scholar 

  27. Shi YN, Li M, Chen S, Xia SX, Wu QL (2016) Progress on the carbon quantum dots and their properties. Chin Polym Bull 1:39

    Google Scholar 

  28. Ahmed E, Morton SW, Hammond PT, Swager TM (2013) Fluorescent multiblock π‐conjugated polymer nanoparticles for in vivo tumor targeting. Adv Mater 25:4504

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu SJ, Zhang JH, Tang SJ, Qiao CY, Wang L, Wang HY, Liu X, Li B, Li YF, Yu WL, Wang XF, Sun HC, Yang B (2012) Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up‐conversion bioimaging applications. Adv Funct Mater 22:4732

    CAS  Google Scholar 

  30. Bai WJ, Zheng HZ, Long YJ, Mao XJ, Gao M, Zhang L (2011) A carbon dots-based fluorescence turn-on method for DNA determination. Anal Sci Int J Jpn Soc Anal Chem 27:243

    CAS  Google Scholar 

  31. Devadas B, Imae T (2017) Effect of carbon dots on conducting polymers for energy storage applications. ACS Sustain Chem Eng 6:127–134. https://doi.org/10.1021/acssuschemeng.7b01858

    Article  CAS  Google Scholar 

  32. Rao Y, Ning H, Ma X, Liu Y, Wang Y, Liu H, Liu JL, Zhao QS, Wu MB (2018) Template-free synthesis of coral-like nitrogen-doped carbon dots/Ni3S2/Ni foam composites as highly efficient electrodes for water splitting. Carbon 129:335

    CAS  Google Scholar 

  33. Hu C, Yu C, Li MY, Wang XN, Dong Q, Wang G, Qiu JS (2015) Nitrogen-doped carbon dots decorated onto graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction. Chem Commun 51:3419

    CAS  Google Scholar 

  34. Wang Y, Wang XC (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51:68

    CAS  Google Scholar 

  35. Ming H, Ma Z, Liu Y, Pan KM, Yu H, Wang F, Kang ZH (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41:9526

    CAS  PubMed  Google Scholar 

  36. Yang YS, Wan MX (2002) Chiral nanotubes of polyaniline synthesized by a template-free method. J Mater Chem 4:897

    Google Scholar 

  37. Al-Hussaini AS (2016) New polymeric based materials: terpoly (aniline, diphenyl amine, and o‐anthranilic acid)/kaolinite composites. Polym Adv Technol 27:1604

    CAS  Google Scholar 

  38. Gu ZM, Li CZ, Wang GC, Zhang L, Li XH, Wang WD, Jin SL (2010) Synthesis and characterization of polypyrrole/graphite oxide composite by in situ emulsion polymerization. J Polym Sci B Polym Phys 48:1329–1335

    CAS  Google Scholar 

  39. Qaiser AA, Hyland MM, Patterson DA (2011) Surface and charge transport characterization of polyaniline—cellulose acetate composite membranes. J Phys Chem B 115:1652–1661

    CAS  PubMed  Google Scholar 

  40. Ge CY, Yang XG, Hou BR (2012) Synthesis of polyaniline nanofiber and anticorrosion property of polyaniline–epoxy composite coating for Q235 steel. J Coat Technol Res 9:59

    CAS  Google Scholar 

  41. Ghosh T, Ghosh R, Basak U, Majumder S, Ball R, Mandal D, Nandi AK, Chatterjee DP (2018) Candle soot derived carbon nanodot/polyaniline hybrid materials through controlled grafting of polyaniline chains for supercapacitors. J Mater Chem A 6:6476

    CAS  Google Scholar 

  42. Luo JP, Fan X, Lu W (2017) Fabrication of polyaniline/graphene composite with 3D porous structures and its electrochemical performance. Polym Mater Sci Eng 33:84

    CAS  Google Scholar 

  43. Wang Y, Wu WT, Wu MB, Sun HD, Xie H, Hu C, Wu XY, Qiu JS (2015) Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions. New Carbon Mater 30:550

    CAS  Google Scholar 

  44. Al-Hussaini AS, Elias AA, El-Ghaffar MAA (2017) New poly (aniline-co-o-phenylenediamine)/kaolinite microcomposites for water decontamination. J Polym Environ 25:1

    Google Scholar 

  45. Al-Hussaini AS, Eltabie KR, Rashad MEE (2016) One-pot modern fabrication and characterization of TiO2@ terpoly (aniline, anthranilic acid and o-phenylenediamine) core-shell nanocomposites via polycondensation. Polymer 101:328

    CAS  Google Scholar 

  46. Mottaghitalab V, Spinks GM, Wallace GG (2005) The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers. Synth Met 152:77

    CAS  Google Scholar 

  47. Izumi CMS, Ferreira AMDC, Constantino VRL, Temperini MLA (2007) Studies on the interaction of emeraldine base polyaniline with Cu (II), Fe (III), and Zn (II) ions in solutions and films. Macromolecules 40:3204

    CAS  Google Scholar 

  48. Al-Hussaini AS (2018) Novel benzidine and o-phenylenediamine copolymer–matrix microcomposites. Inorg Organomet Polym Mater 28:871

    CAS  Google Scholar 

  49. Al-Hussaini AS (2017) In situ oxidative copolymerization and characterization of new poly(benzidine-co-o-phenylenediamine)/kaolinite microcomposites. Ploym Sci Ser B 59:1

    Google Scholar 

  50. Al-Hussaini AS (2016) Inexpensive fabrication and characterization of crystalline poly (o-anthranilic acid-co-o-phenylenediamine) emeraldine base/bentonite nanocomposites. J Macromol Sci B 55:1386

    CAS  Google Scholar 

  51. Yan XB, Chen JT, Yang J, Xue QJ, Miele P (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide—polyaniline and graphene—polyaniline hybrid papers. ACS Appl Mater Interfaces 2:2521

    CAS  PubMed  Google Scholar 

  52. Wu WT, Zhan LY, Fan WY, Song JZ, Li XM, Li ZT, Wang RQ, Zhang JQ, Zheng JT, Wu MB, Zeng HB (2015) Cu–N dopants boost electron transfer and photooxidation reactions of carbon dots. Angew Chem Int Ed 54:6540

    CAS  Google Scholar 

  53. Lin SJ, Sun HJ, Peng TJ, Jiang LH (2014) Synthesis of high-performance polyaniline/graphene oxide nanocomposites. High Perform Polym 26:790

    Google Scholar 

  54. Wu MB, Ai PP, Tan MH, Jiang B, Li YP, Zheng JT, Wu WT, Li ZT, Zhang QH, He XJ (2014) Synthesis of starch-derived mesoporous carbon for electric double layer capacitor. Chem Eng J 245:166

    CAS  Google Scholar 

  55. Yan J, Wei T, Shao B, Fan ZJ, Qian WZ, Zhang ML, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487

    CAS  Google Scholar 

  56. Kulandaivalu S, Zainal Z, Sulaiman Y (2016) Influence of monomer concentration on the morphologies and electrochemical properties of PEDOT, PANI, and PPy prepared from aqueous solution. Int J Polym Sci 14:1–12

    Google Scholar 

Download references

Acknowledgements

Financial support from National Science Foundation of China (51763023) and Application for tender subject of engineering technology research center of Xinjiang Normal University (XJNUGCZX122017A03) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arzugul Muslim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdunazar, A., Zhang, Y., Muslim, A. et al. Preparation and electrochemical characterization of carbon dots/polyaniline composite materials. Polym. Bull. 77, 1067–1080 (2020). https://doi.org/10.1007/s00289-019-02795-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02795-y

Keywords

Navigation