Skip to main content
Log in

Flame retardant effect of aluminum hypophosphite in heteroatom-containing polymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present study, the effect of the aluminum hypophosphite (AlHP) concentration on the flame retardant properties of the four different polymers [polyamide 6 (PA6), poly(lactic acid) PLA, thermoplastic polyurethane (TPU) and poly(methyl methacrylate) (PMMA)] was investigated through mass loss calorimeter tests (MLC), thermogravimetric analysis, limiting oxygen index (LOI) and vertical burning test (UL-94). Test results from UL-94 test revealed that 20 wt% AlHP was needed to reach V0 rating in the PA6, TPU and PMMA and 10 wt% was required for PLA. LOI values and the char yields of all composites were increased with increasing AlHP amount. However, peak heat release (pHRR) and total heat evolved values decreased as the added amount of AlHP increased. The highest LOI value (31) and the lowest pHRR value (134 kW/m2) were obtained in TPU/30 AlHP composites. In brief, the comprehensive test results showed that the incorporation of the AlHP improved the flame retardant properties of the PA6, PLA, TPU and PMMA via the formation of the char in the condensed phase and radical trapping and dilution effect in the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dasari A, Yu Z, Cai G, Mai Y (2013) Recent developments in the fire retardancy of polymeric materials. Prog Polym Sci 38:1357–1387. https://doi.org/10.1016/j.progpolymsci.2013.06.006

    Article  CAS  Google Scholar 

  2. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta J, Dubois Ph (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R Rep 63:100–125. https://doi.org/10.1016/j.mser.2008.09.002

    Article  CAS  Google Scholar 

  3. Morgan A, Gilman J (2013) An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater 37:259–279. https://doi.org/10.1002/fam.2128

    Article  CAS  Google Scholar 

  4. Chen X, Ma C, Jiao C (2016) Synergistic effect between [Emim] PF6 and aluminum hypophosphite on flame retardant thermoplastic polyurethane. RSC Adv 6:67409–67417. https://doi.org/10.1039/C6RA14094G

    Article  CAS  Google Scholar 

  5. Zhao B, Chen L, Long J, Jian R, Wang Y (2013) Synergistic effect between aluminum hypophosphite and alkyl-substituted phosphinate in flame-retarded polyamide 6. Ind Eng Chem Res 52:17162–17170. https://doi.org/10.1021/ie4009056

    Article  CAS  Google Scholar 

  6. Chen X, Ma C, Jiao C (2016) Enhancement of flame-retardant performance of thermoplastic polyurethane with the incorporation of aluminum hypophosphite and iron-graphene. Polym Degrad Stab 129:275–285. https://doi.org/10.1016/j.polymdegradstab.2016.04.017

    Article  CAS  Google Scholar 

  7. Jian RK, Chen L, Zhao B, Yan YW, Li XF, Wang YZ (2014) Acrylonitrile–butadiene–styrene terpolymer with metal hypophosphite: flame retardance and mechanism research. Ind Eng Chem Res 53:2299–2307. https://doi.org/10.1021/ie403726m

    Article  CAS  Google Scholar 

  8. Tang G, Wang X, Xing W, Zhang P, Wang B, Hong N, Yang W, Hu Y, Song L (2012) Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind Eng Chem Res 51:12009–12016. https://doi.org/10.1021/ie3008133

    Article  CAS  Google Scholar 

  9. Li Q, Li B, Zhang S, Lin M (2012) Investigation on effect of aluminum and magnesium hypophosphites on flame retardancy and thermal degradation of polyamide 6. J Appl Polym Sci 125:1782–1789. https://doi.org/10.1002/app.35678

    Article  CAS  Google Scholar 

  10. Pan Y, Hong N, Zhan J, Wang B, Song L, Hu Y (2014) Effect of graphene on the fire and mechanical performances of glass fiber-reinforced polyamide 6 composites containing aluminum hypophosphite. Polym Plast Technol and Eng 53:1467–1475. https://doi.org/10.1080/03602559.2014.909483

    Article  CAS  Google Scholar 

  11. Lin Y, Jiang S, Hu Y, Chen G, Shi X, Peng X (2018) Hybrids of aluminum hypophosphite and ammonium polyphosphate: highly effective flame retardant system for unsaturated polyester resin. Polym Compos 39:1763–1770. https://doi.org/10.1002/pc.24128

    Article  CAS  Google Scholar 

  12. Xiao X, Hu S, Zhai J, Chen T, Mai Y (2016) Thermal properties and combustion behaviors of flame-retarded glass fiber-reinforced polyamide 6 with piperazine pyrophosphate and aluminum hypophosphite. J Therm Anal Calorim 125:175–185. https://doi.org/10.1007/s10973-016-5391-0

    Article  CAS  Google Scholar 

  13. Zhou X, Li J, Wu Y (2015) Synergistic effect of aluminum hypophosphite and intumescent flame retardants in polylactide. Polym Adv Technol 26:255–265. https://doi.org/10.1002/pat.3451

    Article  CAS  Google Scholar 

  14. Xiao S, Chen M, Dong L, Deng C, Chen L, Wang Y (2014) Thermal degradation, flame retardance and mechanical properties of thermoplastic polyurethane composites based on aluminum hypophosphite. Chin J Polym Sci 32:98–107. https://doi.org/10.1007/s10118-014-1378-0

    Article  CAS  Google Scholar 

  15. Shi Y, Fu L, Chen X, Guo J, Yang F, Wang J, Zheng Y, Hu Y (2017) Hypophosphite/graphitic carbon nitride hybrids: preparation and flame-retardant application in thermoplastic polyurethane. Nanomaterials 7:259–272. https://doi.org/10.3390/nano7090259

    Article  CAS  PubMed Central  Google Scholar 

  16. Zhao B, Chen L, Wang Y (2012) Thermal degradation and fire behaviors of glass fiber reinforced PA6 flame retarded by combination of aluminum hypophosphite with melamine derivatives. In: Morgan AB, Wilkie CA, Nelson GL (eds) Fire and polymers VI: new advances in flame retardant chemistry and science, vol 1118. ACS symposium series. American Chemical Society, Washington, pp 168–182. https://doi.org/10.1021/bk-2012-1118.ch012

    Chapter  Google Scholar 

  17. Liu G, Gao S (2018) Synergistic effect between aluminum hypophosphite and a new intumescent flame retardant system in poly(lactic acid). J Appl Polym Sci 135:46359–46368. https://doi.org/10.1002/app.46359

    Article  CAS  Google Scholar 

  18. Tang G, Zhang R, Wang X, Wang B, Song L, Hu Y, Gong X (2013) Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite. J Macromol Sci A 50:255–269. https://doi.org/10.1080/10601325.2013.742835

    Article  CAS  Google Scholar 

  19. Zhu ZM, Rao WH, Kang AH, Liao W, Wang YZ (2018) Highly effective flame retarded polystyrene by synergistic effects between expandable graphite and aluminum hypophosphite. Polym Degrad Stab 154:1–9. https://doi.org/10.1016/j.polymdegradstab.2018.05.015

    Article  CAS  Google Scholar 

  20. Wu W, Lv S, Li X, Qu H, Zhang H, Xu J (2014) Using TG–FTIR and TG–MS to study thermal degradation of metal hypophosphites. J Therm Anal Calorim 118:1569–1575. https://doi.org/10.1007/s10973-014-4085-8

    Article  CAS  Google Scholar 

  21. Aoyagi Y, Yamashita K, Doi Y (2002) Thermal degradation of poly[(R)-3-hydroxybutyrate], poly [Ɛ-caprolactone], and poly[(S)-lactide]. Polym Degrad Stab 76:53–59. https://doi.org/10.1016/S0141-3910(01)00265-8

    Article  CAS  Google Scholar 

  22. Isıtman N, Kaynak C (2010) Nanoclay and carbon nanotubes as potential synergistic of an organophosphorus flame-retardant in poly(methyl methacrylate). Polym Degrad Stab 95:1523–1532. https://doi.org/10.1016/j.polymdegradstab.2010.06.013

    Article  CAS  Google Scholar 

  23. Manring LE (1991) Thermal degradation of poly(methyl methacrylate). 4. Random side group scission. Macromolecules 24:3304–3309. https://doi.org/10.1021/ma00011a040

    Article  CAS  Google Scholar 

  24. He J, Cai G, Wilkie CA (2014) The effects of several sulfonates on thermal and fire retardant properties of poly(methyl methacrylate) and polystyrene. Polym Adv Technol 25:160–167. https://doi.org/10.1002/pat.3217

    Article  CAS  Google Scholar 

  25. Laachachi A, Ferriol M, Cochez M, Cuesta JML, Ruch D (2009) A comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly(methyl methacrylate). Polym Degrad Stab 94:1373–1378. https://doi.org/10.1016/j.polymdegradstab.2009.05.014

    Article  CAS  Google Scholar 

  26. Cinausero N, Azema N, Cuesta JML, Cochez M, Ferriol M (2011) Impact of modified alumina oxides on the fire properties of PMMA and PS nanocomposites. Polym Adv Technol 22:1931–1939

    Article  CAS  Google Scholar 

  27. Jiang S, Yang H, Qian X, Shi Y, Zhou K, Xu H, Shan X, Lo S, Hu Y, Gui Z (2014) A novel transparent cross-linked poly(methyl methacrylate) based copolymer with enhanced mechanical, thermal and flame retardant properties. Ind Eng Chem Res 53:2880–3887. https://doi.org/10.1021/ie4035863

    Article  CAS  Google Scholar 

  28. Cinausero N, Azema N, Lopez-Cuesta JM, Cochez M, Ferriol M (2011) Synergistic effect between hydrophobic oxide nanoparticles and ammonium polyphosphate on fire properties of poly(methyl methacrylate) and polystyrene. Polym Degrad Stab 96:1445–1454. https://doi.org/10.1016/j.polymdegradstab.2011.05.008

    Article  CAS  Google Scholar 

  29. Huang G, Guo H, Yang J, Wang X, Gao J (2013) Effect of phosphorus-nitrogen containing quaternary ammonium salt structure on the flammability properties of poly(methyl methacrylate)/montmorillonite nanocomposites. Ind Eng Chem Res 52:4089–4097

    Article  CAS  Google Scholar 

  30. Schartel B (2010) Phosphorus-based flame retardancy mechanisms—old hat or a starting point for future development? Materials 3:4710–4745. https://doi.org/10.3390/ma3104710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712. https://doi.org/10.1016/S0079-6700(02)00018-7

    Article  CAS  Google Scholar 

  32. Schartel B, Hull TR (2007) Development of fire-retardant materials—interpretation of cone calorimeter data. Fire Mater 31:327–354. https://doi.org/10.1002/fam.949

    Article  CAS  Google Scholar 

  33. Qi Y, Wu W, Liu X, Qu H, Xu J (2017) Preparation and characterization of aluminum hypophosphite/reduced graphene oxide hybrid material as a flame retardant additive for PBT. Fire Mater 41:195–208. https://doi.org/10.1002/fam.2382

    Article  CAS  Google Scholar 

  34. Yang W, Song L, Hu Y (2013) Comparative study on thermal decomposition and combustion behavior of glass-fiber reinforced poly (1,4-butylene terephthalate) composites containing trivalent metal (Al, La, Ce) hypophosphite. Polym Compos 34:1832–1839. https://doi.org/10.1002/pc.22588

    Article  CAS  Google Scholar 

  35. Yuan B, Bao C, Guo Y, Song L, Liew KM, Hu Y (2012) Preparation and characterization of flame retardant aluminum hypophosphite/poly (vinyl alcohol) composite. Ind Eng Chem Res 51:14065–14075. https://doi.org/10.1021/ie301650f

    Article  CAS  Google Scholar 

  36. Messerschmidt B, Hees PV (2002) Influence of delay times and response times on heat release measurements. Fire Mater 26:191–199. https://doi.org/10.1002/1099-1018(200003/04)24:2%3c121:AID-FAM732%3e3.0.CO;2-K

    Article  Google Scholar 

  37. Sponton M, Ronda JC, Galia M, Cadiz V (2009) Cone calorimetry studies of benzoxazine–epoxy systems flame retarded by chemically bonded phosphorus or silicon. Polym Degrad Stab 94:102–106. https://doi.org/10.1016/j.polymdegradstab.2008.10.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Erciyes University Scientific Research Unit under Grant No. BAP-FDK-2016-6288.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Dogan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savas, L.A., Hacioglu, F., Hancer, M. et al. Flame retardant effect of aluminum hypophosphite in heteroatom-containing polymers. Polym. Bull. 77, 291–306 (2020). https://doi.org/10.1007/s00289-019-02746-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02746-7

Keywords

Navigation