Skip to main content
Log in

Study of polycarbosilane-supported copper(II) as a heterogeneous catalyst

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polycarbosilane containing Cu(II) (Cu-PCS) was prepared. The performance of Cu-PCS as a catalyst was verified using the three-component Biginelli reaction. It was found to be a good catalyst. The product, dihydropyrimidinone, could be easily isolated from the reaction medium. The heterogeneous nature of the catalyst helped in separating the product. The reaction conditions were optimized, and the catalyst was found to be reusable. The catalytic activity of Cu-PCS was compared with that of Cu ion supported on SBA-15 and amorphous silica. Cu-PCS exhibited better catalytic activity, recyclability and was devoid of metal leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Greenberg S, Clendenning SB, Liu K, Manners I (2005) Synthesis and lithographic patterning of polycarbosilanes with pendant cobalt carbonyl clusters. Macromolecules 38(6):2023–2026

    Article  CAS  Google Scholar 

  2. Krawiec P, Kockrick E, Borchardt L, Geiger D, Corma A, Kaskel S (2009) Ordered mesoporous carbide derived carbons: novel materials for catalysis and adsorption. J Phys Chem C 113(18):7755–7761

    Article  CAS  Google Scholar 

  3. Oyamada H, Akiyama R, Hagio H, Naito T, Kobayashi S (2006) Continuous flow hydrogenation using polysilane-supported palladium/alumina hybrid catalysts. Chem Commun 31:4297–4299

    Article  Google Scholar 

  4. Mangala K, Sreekumar K (2013) Synthesis and application of polycarbosilane supported manganese ions as catalyst in mannich reaction. J Appl Polym Sci 127(1):717–723

    Article  CAS  Google Scholar 

  5. Mangala K, Sreekumar K (2013) Polycarbosilane-supported titanium(IV) catalyst for Knoevenagel condensation reaction. Appl Organomet Chem 27(2):73–78

    Article  CAS  Google Scholar 

  6. Mangala K, Sinija PS, Sreekumar K (2015) Palladium(II) supported on polycarbosilane: application as reusable catalyst for Heck reaction. J Mol Catal A Chem 407:87–92

    Article  CAS  Google Scholar 

  7. Ganicz T, Stanczyk WA, Chmielecka J, Kowalski J (2009) Liquid crystalline polycarbosilanes and poly(di-n-butylsiloxane) as stationary phases in gas chromatography. Polym Int 58(30):248–254

    Article  CAS  Google Scholar 

  8. Ganicz T, Stanczyk WA (2000) Vinylsilanes as monomers for side chain polymer liquid crystals. Macromolecules 33(2):289–293

    Article  CAS  Google Scholar 

  9. Iseki T, Narisawa M, Katase Y, Oka K, Dohmaru T, Okamura K (2001) An efficient process of cross-linking poly(methylsilane) for SiC. Ceram Chem Mater 13:4163–4169

    Article  CAS  Google Scholar 

  10. Wang X, Yuan Y, Graiver D, Cabasso I (2007) Electrosynthesis of linear and branched methylene-bridged oligo- and polycarbosilanes. Macromolecules 40(11):3939–3950

    Article  CAS  Google Scholar 

  11. Lee YJ, Lee JH, Kim SR, Kwon WT, Klepeis JP, Teat SJ, Kim YH (2010) Synthesis and characterization of novel preceramic polymer for SIC. J Mater Sci 45(4):1025–1031

    Article  CAS  Google Scholar 

  12. Lodhe M, Babu N, Selvam A, Balasubramanian M (2015) Synthesis and characterization of high ceramic yield polycarbosilane precursor for SiC. J Adv Ceram 4(4):307–311

    Article  CAS  Google Scholar 

  13. Czubarow P, Sugimoto T, Seyferth D (1998) Sonochemical synthesis of a poly(methylsilane), a precursor for near-stoichiometric SiC. Macromolecules 31(2):229–238

    Article  CAS  Google Scholar 

  14. Schilling CL, Hudson CO, William TC, Wesson JP (1985) US Patent 4,497,787

  15. Cao F, Kim D, Li X (2002) Preparation of hybrid polymer as a near-stoichiometric SiC precursor by blending of polycarbosilane and polymethysilane. J Mater Chem 12(1):1213–1217

    Article  CAS  Google Scholar 

  16. Huang M, Fang Y, Li R, Huang T, Yu Z, Xia H (2009) Synthesis and properties of liquid polycarbosilanes with hyperbranched structures. J Appl Polym Sci 113(3):1611–1618

    Article  CAS  Google Scholar 

  17. Choi SH, Youn DY, Jo SM, Oh SG (2011) Micelle-mediated synthesis of single-crystalline β(3C)-SiC fibers via emulsion electrospinning. ACS Appl Mater Interfaces 3(5):1385–1389

    Article  CAS  Google Scholar 

  18. Gascon V, Marquez-Alvarez C, Blanco RM (2014) Efficient retention of laccase by non-covalent immobilization on amino-functionalized ordered mesoporous silica. Appl Catal A Gen 482:116–126

    Article  CAS  Google Scholar 

  19. Yuan B, Pan Y, Li Y, Yin B, Jiang H (2010) A highly active heterogeneous palladium catalyst for the Suzuki–Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew Chem Int Ed 49(24):4054–4058

    Article  CAS  Google Scholar 

  20. Jin MJ, Lee DH (2010) A practical heterogeneous catalyst for the Suzuki, Sonogashira, and Stille coupling reactions of unreactive aryl chlorides. Angew Chem Int Ed 49(6):1119–1122

    Article  CAS  Google Scholar 

  21. Dvornic PR, Owen MJ (2009) Silicon-containing dendritic polymers. Advances in silicon science, vol 2. Springer, New York

    Book  Google Scholar 

  22. Song YC, Hasagawa Y, Yang SJ, Sato M (1988) Ceramic fibres from polymer precursor containing Si–O–Ti bonds. J Mater Sci 23(6):1911–1920

    Article  CAS  Google Scholar 

  23. Stepnicka P, Schulz J, Klemann T, Siemeling U, Cisarova I (2010) Synthesis, structural characterization, and catalytic evaluation of palladium complexes with homologous ferrocene-based pyridylphosphine ligands. Organometallics 29(14):3187–3200

    Article  CAS  Google Scholar 

  24. Zhao FY, Bhanage BM, Shirai M, Arai M (2000) Heck reactions of iodobenzene and methyl acrylate with conventional supported palladium catalysts in the presence of organic and/and inorganic bases without ligands. Chem Eur J 6(5):843–848

    Article  CAS  Google Scholar 

  25. Opanasenko M, Stepnicka P, Cejka J (2014) Heterogeneous Pd catalysts supported on silica matrices. RSC Adv 4:65137–65162

    Article  CAS  Google Scholar 

  26. Sharma B, Striegler S (2018) Crosslinked microgels as platform for hydrolytic catalysts. Biomacromolecules 19(4):1164–1174

    Article  CAS  Google Scholar 

  27. Wang Y, Yan L, Li C, Jiang M, Wang W, Ding Y (2018) Highly efficient porous organic copolymer supported Rh catalysts for heterogeneous hydroformylation of butenes. Appl Catal A 551:98–105

    Article  CAS  Google Scholar 

  28. Xu C, Hu M, Wang Q, Fan G, Wang Y, Zhang Y, Gao D, Bi J (2018) Hyper-cross-linked polymer supported rhodium: an effective catalyst for hydrogen evolution from ammonia borane. Dalton Trans 47:2561–2567

    Article  CAS  Google Scholar 

  29. Patel HA, Sawant AM, Rao VJ, Patel AL, Bedekar AV (2017) Polyaniline supported FeCl3: an effective heterogeneous catalyst for Biginelli reaction. Catal Lett 147(9):2306–2312

    Article  CAS  Google Scholar 

  30. Puripat M, Ramozzi R, Hatanaka M, Parasuk W, Parasuk V, Morokuma K (2015) The Biginelli reaction is a urea-catalyzed organocatalytic multicomponent reaction. J Org Chem 80(14):6959–6967

    Article  CAS  Google Scholar 

  31. Sheykhan M, Yahyazadeh A, Ramezani L (2017) A novel cooperative Lewis acid/Brønsted base catalyst Fe3O4@SiO2-APTMS-Fe(OH)2: an efficient catalyst for the Biginelli reaction. Mol Catal 435:166–173

    Article  CAS  Google Scholar 

  32. Palmer G (1967) Electron paramagnetic resonance. Methods Enzymol 10:594–609

    Article  Google Scholar 

  33. Lund A, Shiotani M, Shimida S (2011) Principles and applications of ESR spectroscopy. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

One of the authors, Mangala, K. gratefully acknowledges CSIR, New Delhi, India, for the award of Junior Research Fellowship. The authors thank NMR Research Centre, IISc., Bangalore and STIC-CUSAT for various analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnapillai Sreekumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Taken in part from the PhD. Thesis of Mangala, K.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangala, K., Sreekumar, K. Study of polycarbosilane-supported copper(II) as a heterogeneous catalyst. Polym. Bull. 77, 153–163 (2020). https://doi.org/10.1007/s00289-019-02741-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02741-y

Navigation