Skip to main content
Log in

In situ grafting effect of a coupling agent on different properties of a poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/olive husk flour composite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Our work is focused on the development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composite materials loaded with olive husk flour (OHF) to solve the problem of compatibility between the hydrophobic polymer matrix and the hydrophilic fibre. A maleic anhydride (MA) modifying agent was used, which was grafted onto the polymer using a screw extruder. The efficiency of the grafting reaction of maleic anhydride on the macromolecular chains of PHBV with the rates of 0.73% for 1% MA and 0.3% for 3% MA was calculated using a titration method. The results showed that the mechanical properties of the PHBV/OHF bio-composites decreased considerably with increased modulus due to the poor interfacial adhesion between PHBV and OHF. The contribution of the modifying agent was undeniable, cohesion significantly improved and the mechanical properties also increased. The thermal properties showed that the degree of crystallinity of the composites decreases after the addition of a modifying agent. However, in view of the results, better adhesion to the interface is achieved with the use of 1% modifying agent (MA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar V, Dev A, Gupta AP (2013) Synthesis of chain extended lactic acid/polypropylene glycol co-polymer. J Mater Environ Sci 4:828–831

    Google Scholar 

  2. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    CAS  Google Scholar 

  3. Shilpi K, Ashok KS (2005) Recent advances in microbial polyhydroxyalkanoates. Polym Biochem 40:607–619

    Google Scholar 

  4. Abed RM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12

    CAS  PubMed  Google Scholar 

  5. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    CAS  Google Scholar 

  6. Chardron S, Bruzaud B, Lignot B et al (2010) Characterization of bionanocomposites based on medium chain length polyhydroxyalkanoates synthesized by Pseudomonas oleovorans. Polym Test 29:966–971

    CAS  Google Scholar 

  7. Rutkowska M, Krasowska K, Heimowska A et al (2008) Environmental degradation of blends of atactic poly[(R, S)-3-hydroxybutyrate) with natural PHBV in Baltic sea water and compost with activated sludge. J Polym Environ 16:183–191

    CAS  Google Scholar 

  8. Vu CM, Sinh LH, Pham LT et al (2018) Preparation and physical characteristics of epoxy resin/bacterial cellulose biocomposites. Polym Bull 75:2607–2625

    Google Scholar 

  9. Vu CM, Sinh LH, Nguyen DD et al (2018) Micro-fibril cellulose as a filler for glass fiber reinforced unsaturated polyester composites: fabrication and mechanical characteristics. Macromol Res 26:54–60

    CAS  Google Scholar 

  10. Bourmaud A, Baley C (2007) Investigations on the recycling of hemp and sisal fiber reinforced polypropylene composites. Polym Degrad Stab 92:1034–1045

    CAS  Google Scholar 

  11. Liu XY, Dai GC (2007) Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites. Exp Polym Lett 1:299–307

    CAS  Google Scholar 

  12. Bessadok A, Marais S, Roudesli S et al (2007) Comportement à l’eau des fibres alfa et agave modifiées chimiquement. Compos Sci Technol 67:685–697

    CAS  Google Scholar 

  13. Beaugrand J, Berzin F (2013) Lignocellulosic fiber reinforced composites: influence of compounding conditions on defibrization and mechanical properties. J Appl Polym Sci 128:1227–1238

    CAS  Google Scholar 

  14. Vu CM, Sinh LH, Choi HJ et al (2017) Effect of micro/nano white bamboo fibrils on physical characteristics of epoxy resin reinforced composites. Cellulose 24:5475–5486

    CAS  Google Scholar 

  15. Tserki V, Zafeiropoulosb NE, Simonb F et al (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos A 36:1110–1118

    Google Scholar 

  16. Zafeiropoulos NE, Willians DR, Baillie CA et al (2002) Engineering and characterization of the interface in flaxe fibre/polypropylene composite materials part I development and investigation of surface treatements. Compos A 33:1083–1093

    Google Scholar 

  17. Bledzki AK, Mamun AA, Lucka-Gabor M et al (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Exp Polym Lett 2:413–422

    CAS  Google Scholar 

  18. Vu CM, Le Hoang S, Nguyen DD et al (2018) Improvement the mode I interlaminar fracture toughness of glass fiber reinforced phenolic resin by using epoxidized soybean oil. Polym Bull 75:4769–4782

    CAS  Google Scholar 

  19. Kaci M, Djidjelli H, Boukerrou A et al (2007) Effect of wood filler treatement and EBAGMA compatibilizer on morphology and mechanical properties of low-density polyethylene/olive husk flour composites. Exp Polym Lett 1:467–473

    CAS  Google Scholar 

  20. Boukerrou A, Krim S, Djidjelli H et al (2011) Study and characterization of composites materials based on polypropylene loaded with olive husk flour. J Appl Polym Sci 122:1382–1394

    Google Scholar 

  21. Dominkovics Z, Danyadi L, Pukanszky B (2007) Surface modification of wood flour and its effect on the properties of PP/wood composites. Compos A 38:1893–1901

    Google Scholar 

  22. Nabar Y, Raquez JM, Dubois P et al (2005) Production of starch foams by twin-screw extrusion: effect of maleated poly(butylene adipate-co-terephthalate) as a compatibilizer. Biomacromolecules 6:807–817

    CAS  PubMed  Google Scholar 

  23. Rosa D, Lotto N, Lopes D et al (2004) The use of roughness for evaluating the biodegradation of poly-β-(hydroxybutyrate) and poly-β-(hydroxybutyrate-co-β- valerate). Polym Test 23:3–8

    CAS  Google Scholar 

  24. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    CAS  Google Scholar 

  25. Yanming C, Jungang L, Jimin F (2013) Spectral characterization of four kinds of biodegradable plastics: poly (lactic acid), poly (butylenes adipate-co-terephthalate), poly (hydroxybutyrate-co-hydroxyvalerate) and poly (butylenes succinate) with FTIR and Raman spectroscopy. J Polym Environ 21:108–114

    Google Scholar 

  26. Li Q, Matuana L (2003) Surface of cellulosic materials modified with functionalized PE coupling agents. J Appl Polym Sci 88:278–286

    CAS  Google Scholar 

  27. Kazayahoko M, Balatinecz JJ, Matuana LM (1999) Surface modification and adhesion mechanisms in wood fiber-polypropylene composites. J Mater Sci 34:6189–6199

    Google Scholar 

  28. Cui Y, Lee S, Noruziaan B (2008) Fabrication and interfacial modification of wood/recycled plastic composite materials. Compos A 39:655–661

    Google Scholar 

  29. Piming M, Denka G, Hristova B et al (2012) Reactive compatibilization of ethylene-co-vinyl acetate/starch blends. Macromol Res 20:1054–1062

    Google Scholar 

  30. Ashori A, Sheshmani S (2010) Hybrid composites made from recycled materials: moisture absorption and thickness swelling behavior. Bioresour Technol 101:4717–4720

    CAS  PubMed  Google Scholar 

  31. Demir H, Atikler U, Balkose D et al (2006) The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites. Compos A 37:447–456

    Google Scholar 

  32. Yang HS, Kim HJ, Park HJ et al (2006) Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Compos Struct 72:429–437

    Google Scholar 

  33. Nachtigall SMB, Cerveira GS, Rosa SML (2007) New polymeric-coupling agent for polypropylene/wood-flour composites. Polym Test 26:619–628

    CAS  Google Scholar 

  34. Adhikary KB, Pang S, Staiger MP (2008) Long-term moisture absorption and thickness swelling behaviour of recycled thermoplastics reinforced with Pinus radiata sawdust. Chem Eng J 142:190–198

    CAS  Google Scholar 

  35. Ichazo MN, Albano C, González J et al (2001) Polypropylene/wood flour composites: treatments and properties. Compos Struct 54:207–214

    Google Scholar 

  36. Arib RMN, Sapuan SM, Ahmad MMHM et al (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 27:391–396

    CAS  Google Scholar 

  37. Khalid M, Ratnam CT, Chuah TG et al (2008) Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose. Mater Des 29:173–178

    CAS  Google Scholar 

  38. Maya JJ, Bejoy F, Varughese KT et al (2008) Effect of Chemical modification on properties of hybrid fiber biocomposite. Compos Part A 39:352–363

    Google Scholar 

  39. Kim HS, Kim S, Kim HJ et al (2006) Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451:181–188

    CAS  Google Scholar 

  40. Javadi A, Srithep Y, Pilla S et al (2010) Processing and characterization of solid and microcellular PHBV/coir fiber composites. Mater Sci Eng 30:749–757

    CAS  Google Scholar 

  41. Jiang L, Huang J, Qian J et al (2008) Study of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites: effects of nucleation agent and compatibilizer. J Polym Environ 16:83–93

    CAS  Google Scholar 

  42. Abdelwahab MA, Flynn A, Chiou B-S et al (2012) Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym Degrad Stab 97:1822–1828

    CAS  Google Scholar 

  43. Gunaratne LM, Shanks RA, Amarasinghe G (2004) Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim Acta 423:127–135

    CAS  Google Scholar 

  44. Singh S, Mohanty AK, Sugie T et al (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos A 39:875–886

    Google Scholar 

  45. Rahman MR, Huque MM, Islam MN et al (2009) Mechanical properties of polypropylene composites reinforced with chemically treated abaca. Compos A 40:511–517

    Google Scholar 

  46. Hammiche D, Boukerrou A, Djidjelli H et al (2012) Synthesis of a new compatibilisant agent PVC-g-MA and its use in the PVC/alfa composites. J Appl Polym Sci 124:4352–4361

    CAS  Google Scholar 

  47. Metin D, Tihminlioğlu F, Balköse D et al (2004) The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos A 35:23–32

    Google Scholar 

  48. Ku H, Wang H, Pattarachaiyakoop N et al (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B 42:856–873

    Google Scholar 

  49. Karmarkar A, Chauhan SS, Jayant M et al (2007) Mechanical properties of wood–fiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Compos A 38:227–233

    Google Scholar 

  50. De laOrden MU, González Sánchez C, González Quesada M et al (2007) Novel polypropylene-cellulose composites using polyethylenimine as coupling agent. Compos A 38:2005–2012

    Google Scholar 

Download references

Acknowledgements

The authors thank the University of Bejaia (Algeria) for its financial assistance with Noura Hamour’s travelling expenses. The authors are also pleased to acknowledge thank the CATEL Company for their help and for the use of the tensile testing facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noura Hamour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamour, N., Boukerrou, A., Djidjelli, H. et al. In situ grafting effect of a coupling agent on different properties of a poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/olive husk flour composite. Polym. Bull. 76, 6275–6290 (2019). https://doi.org/10.1007/s00289-019-02725-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02725-y

Keywords

Navigation