Skip to main content
Log in

Thermo-mechanical recycling effects on morphology and properties of ethylene vinyl acetate copolymer/olive husk flour composites

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

The effects of thermo-mechanical recycling through repeated extrusion cycles on morphology and properties of neat ethylene vinyl acetate copolymer (EVA) and EVA/olive husk flour (OHF) composites (70/30 w/w) with and without ethylene–butyl acrylate–glycidyl methacrylate (EBAGMA) compatibilizer were investigated in a single screw extruder machine up to five repeated cycles. The study showed that no significant modifications in the properties of the virgin EVA/OHF composite were observed along the recycling and this stability was further enhanced in the presence of EBAGMA. Indeed after five repeated extrusion cycles, the chemical structure and properties of both uncompatibilized and compatibilized composites remained unchanged compared to the neat polymer, which was subjected likely to cross-linking, in the fifth cycle. Furthermore, SEM analysis showed a better dispersion of OHF particles in EVA matrix and a good filler–polymer interfacial adhesion, being, however, more pronounced for the compatibilized composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kazemi NS (2013) Use of recycled plastics in wood plastic composites—a review. Waste Manag 33:1898–1905. https://doi.org/10.1016/j.wasman.2013.05.017

    Article  Google Scholar 

  2. Kaci M, Djidjelli H, Boukerrou A, Zaidi L (2007) Effect of wood filler treatment and EBAGMA compatibilizer on morphology and mechanical properties of low density polyethylene/olive husk flour composites. Express Polym Lett 1:467–473. https://doi.org/10.3144/expresspolymlett.2007.65

    Article  CAS  Google Scholar 

  3. Gregorovaa V, Ledererovaa M, Stefunkova Z (2017) Investigation of influence of recycled plastics from cable, ethylene vinyl acetate and polystyrene waste on lightweight concrete properties. Procedia Eng 195:127–133. https://doi.org/10.1016/j.proeng.2017.04.534

    Article  CAS  Google Scholar 

  4. Retegi A, Arbelaiz A, Alvarez P, Liano-Ponte R, Labidi J, Mondragon I (2006) Effects of hygrothermal ageing on mechanical properties of flaw pulps and their polypropylene matrix composites. J Appl Polym Sci 102:3438–3445

    Article  CAS  Google Scholar 

  5. Hamma A, Kaci M, Pegoretti A (2013) Polypropylene/date stone flour composites: effects of filler contents and EBAGMA compatibilizer on morphology, thermal, and mechanical properties. J Appl Polym Sci 128:4314–4321. https://doi.org/10.1002/app.38665

    Article  CAS  Google Scholar 

  6. Kaci M, Hamma A, Pillin I, Grohens Y (2009) The effect of reprocessing cycles on the morphology and properties of poly(propylene)/wood flour composites compatibilized with EBAGMA terpolymer. Macromol Mater Eng 294:532–540. https://doi.org/10.1002/mame.200900089

    Article  CAS  Google Scholar 

  7. Shirdel S, Ghadikolaeia OmraniaA, Ehsani M (2017) Non-isothermal degradation kinetics of EVA copolymer nanocomposite reinforced with modified bacterial cellulose nanofibers using advanced isoconversional and master plot analyses. Thermochim Acta 655:87–93. https://doi.org/10.1016/j.tca.2017.06.014

    Article  CAS  Google Scholar 

  8. Jansson A, Möller K, Gevert T (2003) Degradation of post-consumer polypropylene materials exposed to simulating recycling–mechanical properties. Polym Degrad Stab 82:37–46. https://doi.org/10.1016/S0141-3910(03)00160-5

    Article  CAS  Google Scholar 

  9. Kaci M, Kaid N, Boukerrou A (2011) Influence of ethylene–butyl acrylate–glycidyl methacrylate terpolymer on compatibility of ethylene vinyl acetate copolymer/olive husk flour composites. Compos Interfaces 18:295–307. https://doi.org/10.1163/092764411X584487

    Article  CAS  Google Scholar 

  10. Hassaini L, Kaci M, Touati N, Pillin I, Kervoelen A, Bruzaud S (2017) Valorization of olive husk flour as a filler for biocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate): effects of silane treatment. Polym Test 59:430–440. https://doi.org/10.1016/j.polymertesting.2017.03.004

    Article  CAS  Google Scholar 

  11. Hassaini L, Kaci M, Benhamida A, BruzaudS PillinI, Grohens Y (2016) The effects of PHBV-g-MA compatibilizer on morphology and properties of poly(3-hydroxybutyrate-Co-3-hydroxyvalerate)/olive husk flour composite. J Adhes Sci Technol 30:2061–2080. https://doi.org/10.1080/01694243.2016.1168961

    Article  CAS  Google Scholar 

  12. Schneider C, Langer R, Loveday D, Hair D (2017) Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery Systems. J Control Release 262:284–295. https://doi.org/10.1016/j.jconrel.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  13. Benhamida A, Kaci M, Cimmino S, Silvestre C, Duraccio D (2009) Melt mixing of ethylene–butylacrylateglycidyl methacrylate terpolymers with LDPE and PET. Macromol Mater Eng 294:122–129. https://doi.org/10.1002/mame.200800214

    Article  CAS  Google Scholar 

  14. Gregoreva A, Cibulkova Z (2005) Stabilization effect of lignin in PP and recycled PP. Polym Degrad Stab 89:553–558. https://doi.org/10.1016/j.polymdegradstab.2005.02.007

    Article  CAS  Google Scholar 

  15. Vargasa ER, Rodrı́guez DN, Menchaca AIB, Martı́nez BMH, Meztaa MP (2004) Degradation effects on the rheological and mechanical properties of multi-extruded blends of impact-modified polypropylene and poly(ethylene-co-vinyl acetate). Polym Degrad Stab 86:301–307. https://doi.org/10.1016/j.polymdegradstab.2004.04.023

    Article  CAS  Google Scholar 

  16. Khan F, Kwek D, Kronfli E, Ahmed S (2008) Photochemical crosslinking of ethylene vinyl acetate and ethylene–propylene–diene terpolymer blends. Polym Degrad Stab 93:1238–1241. https://doi.org/10.1016/j.polymdegradstab.2008.03.019

    Article  CAS  Google Scholar 

  17. Mischra S, Patil YP (2003) Compatibilizing effect of different anhydrides on cane bagasse pith and melamine–formaldehyde–resin composites. J Appl Polym Sci 88:1768–1774. https://doi.org/10.1002/app.12207

    Article  CAS  Google Scholar 

  18. Wang T, Liu D, Xiong C (2007) Synthesis of EVA-g-MAH and its compatibilization effect to PA11/PVC blends. J Mater Sci 42:3398–3407. https://doi.org/10.1007/s10853-006-1218-x

    Article  CAS  Google Scholar 

  19. Najafi SK, Tajvidi M, Hamidina E (2007) Effect of temperature, plastic type and virginity on the water uptake of sawdust/plastic composites. Eur J Wood Wood Prod 65:377–382. https://doi.org/10.1007/s00107-007-0176-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadjet Dehouche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehouche, N., Kaci, M. & Kaid, N. Thermo-mechanical recycling effects on morphology and properties of ethylene vinyl acetate copolymer/olive husk flour composites. Int J Plast Technol 23, 246–252 (2019). https://doi.org/10.1007/s12588-019-09256-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-019-09256-1

Keywords

Navigation