Skip to main content
Log in

Understanding the effect of silane crosslinking reaction on the properties of PP/POE blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect of silane crosslinking reaction on properties and structure of polypropylene (PP)/ethylene–octene elastomer (POE) blends had been carried out. FTIR and gel content tests confirmed the grafting and crosslinking reaction mechanism of PP/POE blends. The incorporation of POE phase enhanced the crosslinking degree and thermal stability of blends. Crystallinity of silane-crosslinked PP/POE blends decreased sharply, and the melting points change a little with the POE content increasing. The rheological curves of silane-crosslinked PP/POE blends showed an obvious “gel point”, corresponding to the dynamic crosslinking network. Solvent resistance tests suggested crosslinking had a great improvement of solvent resistance. The blends with 30% POE had good comprehensive mechanical properties. Scanning electron microscopy images exhibited that crosslinking had a great influence on the morphologies of silane-crosslinked PP/POE blends. Characterization results indicated the “gel point” acquired from rheology had some corresponding relationship with mechanical properties and solvent resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baker W, Scott C, Hu G (2001) Reactive polymer blending. Hanser, Munich

    Book  Google Scholar 

  2. Folkes M, Hope P (1993) Polymer blends and alloys. Chapman & Hall, London

    Book  Google Scholar 

  3. Sailer C, Handge UA (2007) Melt viscosity, elasticity, and morphology of reactively compatibilized polyamide 6/styrene–acrylonitrile blends in shear and elongation. Macromolecules 40:2019–2028

    Article  CAS  Google Scholar 

  4. Bartczak Z, Argon AS, Cohen RE, Weinbergu M (1999) Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers. Polymer 40:2331–2346

    Article  CAS  Google Scholar 

  5. Holz N, Goizueta GS, Capiati N (2010) Linear low-density polyethylene addition to polypropylene/elastomer blends: phase structure and impact properties. Polym Eng Sci 36:2765–2770

    Article  Google Scholar 

  6. Macaubas PHP, Demarquette NR (2001) Morphologies and interfacial tensions of immiscible polypropylene/polystyrene blends modified with triblock copolymers. Polymer 42:2543–2554

    Article  CAS  Google Scholar 

  7. Liu GY, Qiu GX (2013) Study on the mechanical and morphological properties of toughened polypropylene blends for automobile bumpers. Polym Bull 70:849–857

    Article  CAS  Google Scholar 

  8. Mazidi MM, Aghjeh MKR (2015) Effects of blend composition and compatibilization on the melt rheology and phase morphology of binary and ternary PP/PA6/EPDM blends. Polym Bull 72:1975–2000

    Article  Google Scholar 

  9. Wang FF, Du HN, Liu H, Zhang Y, Zhang XW, Zhang J (2015) The synergistic effects of β-nucleating agent and ethylene-octene copolymer on toughening isotactic polypropylene. Polym Test 45:1–11

    Article  CAS  Google Scholar 

  10. Sirisinha K, Boonkongkaew M, Kositchaiyong S (2010) The effect of silane carriers on silane grafting of high-density polyethylene and properties of crosslinked products. Polym Test 29:958–965

    Article  CAS  Google Scholar 

  11. Sirisinha K, Chimdist S (2008) Silane-crosslinked ethylene–octene copolymer blends: thermal aging and crystallization study. J Appl Polym Sci 109:2522–2528

    Article  CAS  Google Scholar 

  12. Jung ST, Kim DY, Kim HB, Jeun JP, Oh SH, Lee BJ, Kang PH (2013) Enhanced solvent resistance of acrylonitrile–butadiene rubber by electron beam irradiation. J Ind Eng Chem 19:566–570

    Article  CAS  Google Scholar 

  13. Yuan B, Chen X, He BB (2008) Studies on rheology and morphology of POE/PP thermoplastic elastomer dynamically crosslinked by peroxide. J Vinyl Addit Technol 14:45–54

    Article  CAS  Google Scholar 

  14. Baek BK, La YH, Na WJ, Lee SH, Hong SM, Han H, Lee YW, Nam GJ, Koo CM (2016) A kinetic study on the supercritical decrosslinking reaction of silane-crosslinked polyethylene in a continuous process. Polym Degrad Stabil 126:75–80

    Article  CAS  Google Scholar 

  15. Garnier L, Duquesne S, Casetta M, Lewandowski M, Bourbigot S (2010) Melt spinning of silane–water cross-linked polyethylene–octene through a reactive extrusion process. React Funct Polym 70:775–783

    Article  CAS  Google Scholar 

  16. Zhang GQ, Wang GL, Zhang J, Wei P, Jiang PK (2006) Performance evaluation of silane crosslinking of metallocene-based polyethylene–octene elastomer. J Appl Polym Sci 102:5057–5061

    Article  CAS  Google Scholar 

  17. Ramar P, Alagar M (2004) Studies on grafting of tris(2-methoxyethoxy)vinylsilane onto ethylene-propylene-diene terpolymer. Polym Adv Technol 15:377–381

    Article  CAS  Google Scholar 

  18. Kamphunthong W, Sirisinha K (2008) Structure development and viscoelastic properties in silane-crosslinked ethylene–octene copolymer. J Appl Polym Sci 109:2347–2353

    Article  CAS  Google Scholar 

  19. Sen SK, Mukherjee B, Bhattacharyya AS, De PP, Bhowmick AK (1992) Kinetics of silane grafting and moisture crosslinking of polyethylene and ethylene propylene rubber. J Appl Polym Sci 44:1153–1164

    Article  CAS  Google Scholar 

  20. Shieh YT, Chuang HC (2001) DSC and DMA studies on silane-grafted and water-crosslinked LDPE/LLDPE blends. J Appl Polym Sci 81:1808–1816

    Article  CAS  Google Scholar 

  21. Nordin R, Ismail H, Ahmad Z, Rashid A (2012) Performance improvement of (linear low-density polyethylene)/poly(vinyl alcohol) blends by in situ silane crosslinking. J Vinyl Addit Technol 18:120–128

    Article  CAS  Google Scholar 

  22. Wang ZZ, Wu XS, Gui Z, Hu Y, Fan WC (2005) Thermal and crystallization behavior of silane-crosslinked polypropylene. Polym Int 54:442–447

    Article  CAS  Google Scholar 

  23. Zhou S, Wang ZZ, Hu Y (2009) Melt grafting of vinyltrimethoxysilane and water crosslinking of polypropylene/ethylene-propylene diene terpolymer blends. J Polym Res 16:173–181

    Article  CAS  Google Scholar 

  24. Xu CH, Fang LM, Chen YK (2014) In situ reactive compatibilized polypropylene/nitrile butadiene rubber blends by zinc dimethacrylate: preparation, structure, and properties. Polym Eng Sci 54:2321–2331

    Article  CAS  Google Scholar 

  25. Mali M, Kadam P, Mhaske S (2017) Preparation and characterization of vinyltrimethoxysilane and dicumyl peroxide–cured (ethylene propylene diene monomer)/polypropylene thermoplastic vulcanizates. J Vinyl Addit Technol 23:312–320

    Article  CAS  Google Scholar 

  26. Bailly M, Kontopoulou M (2009) Preparation and characterization of thermoplastic olefin/nanosilica composites using a silane-grafted polypropylene matrix. Polymer 50:2472–2480

    Article  CAS  Google Scholar 

  27. An YJ, Zhang ZJ, Bi WG, Wang YH, Tang T (2008) Characterization of high melt strength polypropylene synthesized via silane grafting initiated by in situ heat induction reaction. J Appl Polym Sci 110:3727–3732

    Article  CAS  Google Scholar 

  28. Zhou HM, Ying JR, Liu F, Xie XL, Li DQ (2010) Non-isothermal crystallization behavior and kinetics of isotactic polypropylene/ethylene-octene blends. Part I: crystallization behavior. Polym Test 29:640–647

    Article  CAS  Google Scholar 

  29. Ying JR, Liu SP, Guo F, Zhou XP, Xie XL (2008) Non-isothermal crystallization and crystalline structure of PP/POE blends. J Therm Anal Calorim 91:723–731

    Article  CAS  Google Scholar 

  30. Wang JF, Guo JW, Li CH, Yang S, Wu H, Guo SY (2014) Crystallization kinetics behavior, molecular interaction, and impact-induced morphological evolution of polypropylene/poly(ethylene-co-octene) blends: insight into toughening mechanism. J Polym Res 21:618

    Article  CAS  Google Scholar 

  31. Liu GY, Qiu GX (2013) Study on the mechanical and morphological properties of toughened polypropylene blends for automobile bumpers. Polym Bull 70:849–857

    Article  CAS  Google Scholar 

  32. Wang WJ, Song XL, Wei JM, Cao SK, Cao YX, Chen JZ, Wang JW (2015) A rheological method for the determination of “super toughness point” of polymer blends: a blend system of nylon1212 with maleated poly(ethylene-octene). J Rheol 59:1431–1447

    Article  CAS  Google Scholar 

  33. Wang WJ, Li CH, Cao YX, Chen JZ, Wang JW (2012) Rheological characteristics and morphologies of styrene–butadiene–maleic anhydride block copolymers. J Appl Polym Sci 123:3234–3241

    Article  CAS  Google Scholar 

  34. Wang WJ, Cao YX, Wang JW, Zheng Q (2009) Rheological characterization and morphology of nylon 1212/functional elastomer blends. J Appl Polym Sci 112:953–962

    Article  CAS  Google Scholar 

  35. Martin JE, Adolf D (1991) The sol–gel transition in chemical gels. Annu Rev Phys Chem 42:311–339

    Article  CAS  Google Scholar 

  36. Dumitraş M, Friedrich C (2004) Network formation and elasticity evolution in dibenzylidene sorbitol/poly(propylene oxide) physical gels. J Rheol 48:1135–1146

    Article  Google Scholar 

  37. Power DJ, Rodd AB, Paterson L, Boger DV (1998) Gel transition studies on nonideal polymer networks using small amplitude oscillatory rheometry. J Rheol 42:1021–1037

    Article  CAS  Google Scholar 

  38. Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31:683–697

    Article  CAS  Google Scholar 

  39. Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  Google Scholar 

  40. Ismail H, Supri Yusof AMM (2004) Blend of waste poly(vinylchloride) (PVCw)/acrylonitrile butadiene-rubber (NBR): the effect of maleic anhydride (MAH). Polym Test 23:675–683

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Outstanding Young Talent Research Fund of Zhengzhou University (No. 1521320024), National Natural Science Foundation of China (No. 51373157) and Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingjun Niu or Wanjie Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Lu, M., Lv, F. et al. Understanding the effect of silane crosslinking reaction on the properties of PP/POE blends. Polym. Bull. 76, 6413–6428 (2019). https://doi.org/10.1007/s00289-019-02724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02724-z

Keywords

Navigation