Skip to main content
Log in

Clean and dry route of synthesis of C60/polyvinylpyrrolidone composite using supercritical carbon dioxide

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present investigation, we have studied polymerization of (a) vinylpyrrolidone (VP) and (b) VP with C60 molecule applying various supercritical conditions with 2,2-azobisisobutyronitrile (AIBN) as a catalyst. Products hence obtained are polyvinylpyrrolidone (PVP) and fullerene-polyvinylpyrrolidone (C60/PVP) polymers. With polymerization reaction, the yield of corresponding C60–PVP polymers was significantly affected under applied concentrations of AIBN (304.5–1218.0 × 10−3 mol/dL) supercritical pressure (1200–1800 psi), temperature (C60 90 ± 1°) and time (3–6 h). The concentration of VP ranged 7.04–12.59 × 10−3 mol/dL. The samples of the synthesized C60/PVP polymer with lowest (24.8%) and highest (45.0%) yields were characterized using UV–Vis, FT-IR, 1H NMR, laser-induced breakdown spectra, scanning electron microscopy and simultaneous TG–DTA–DSC. The morphology of the C60/PVP polymers was confirmed by scanning electron micrographs which indicates the existence of separated C60 phases with heterogeneous morphology in corresponding C60/PVP polymers in all the cases. Simultaneous TG–DTA–DSC revealed enhanced thermal stability of C60/PVP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ravi P, Dai S, Wang C, Tam KC (2007) Fullerene containing polymers: a review on their synthesis and supramolecular behavior in solution. J Nanosci Nanotechnol 7(4–5):1176–1196

    Article  CAS  PubMed  Google Scholar 

  2. Wang C, Guo Z, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141

    Article  CAS  Google Scholar 

  3. Geckeler KE, Samal S (2004) Syntheses and properties of macromolecular fullerenes—a review. Russ J Appl Chem 78(1):130–136

    Google Scholar 

  4. Mountrichas G, Pispas S, Kamitsos EI, Xenogiannopoulou E, Couris S (2005) Stable aqueous dispersions of C60 fullerene by the use of a block copolymer. J Phys Conf Ser 10:163–166

    Article  CAS  Google Scholar 

  5. Dominik E, Robert S (2014) Nanocarbon-inorganic hybrids: next generation composites for sustainable energy applications. Walter de Gruyter GmbH & Co KG Publication, Berlin

    Google Scholar 

  6. Jiaxing S, Xiao Z, Long B, Zhiguo L, Zhao J, Jiyou G (2018) Effect of shell growth on the morphology of polyvinyl acetate/polystyrene inverted core–shell latex fabricated by acrylonitrile grafting. Materials 11:2482

    Article  Google Scholar 

  7. Ozkazanc H, Ozkaz E (2017) Novel nanocomposites of polypyrrole doped with fullerene C60. J Macromol Sci Part B Phys 56(2):83–96

    Article  CAS  Google Scholar 

  8. Chen JG, Liu X, Liu ZW, Hu DD, Congjie Z, Xue D, Xiao J, Liu ZT (2012) Intermolecular-interaction-dominated solvation behaviors of liquid monomers and polymers in gaseous and supercritical carbon dioxide. Macromolecules 45(11):4907–4919

    Article  CAS  Google Scholar 

  9. Gabriela A, Gabrielle CC, Jacques D, Michel NJ, Bogdan CS, Jack C (2005) Multifunctional, water-soluble, C60-pendant maleic anhydride copolymer. J Polym Sci Part A Polym Chem 43:5814–5822

    Article  CAS  Google Scholar 

  10. Barros AA, Silva JM, Craveiro R, Paiva A, Reis RL et al (2017) Green solvents for enhanced impregnation processes in biomedicine. Curr Opin Green Sustain Chem 5:82

    Article  Google Scholar 

  11. Skoog D, Holler FJ, Crouch SR (2017) Principles of instrumental analysis. Cengage learning. Publishers and Distributers, New York

    Google Scholar 

  12. Hemalatha P, Veeraiah MK, Kumar SP, Madegowda NM, Manju M (2014) Reactivity ratios of N-vinylpyrrolidone-acrylic acid copolymer. Am J Polym Sci 4(1):16–23

    CAS  Google Scholar 

  13. Laserna J, Vadillo JM, Purohit P (2018) Laser-induced breakdown spectroscopy (LIBS): fast, effective, and agile leading edge analytical technology. Appl Spectrosc 72(S1):35–50

    CAS  PubMed  Google Scholar 

  14. Gombos Z, Nagy V, Vas LM, Gaál J (2005) Investigation of pore size and resin absorbency in chopped strands. Period Polytech Ser Mech Eng 49(2):131–148

    Google Scholar 

  15. Cooper AI, Wood CD, Holmes AB (2000) Synthesis of well-defined macroporous polymer monoliths by sol–gel polymerization in supercritical CO2. Ind Eng Chem Res 39:4741–4744

    Article  CAS  Google Scholar 

  16. Zaidi MGH, Sharma D, Bhullar N, Agarwal V, Alam S, Rai AK, Pant RP (2010) Synthesis of polyvinyl pyridine ferrite nanocomposites in supercritical CO2. J Nanostruct Polym Nanocompd 6(4):103–109

    Google Scholar 

  17. Bhullar N, Zaidi MGH (2007) Synthesis of polyvinyl pyridine-C60 conjugate in supercritical carbon dioxide. Int J Nanosci Nanotechnol 3(1):63–68

    Google Scholar 

  18. Zhang WC, Zhou P, Du FS, Li ZC, Li FM (2001) The morphology investigation of hammer-like C60 conjugated polystyrene in solution. Acta Polym Sin 4:557–560

    Google Scholar 

  19. Kuo C, Kumar J, Tripathy SK, Long Y, Chiang J (2001) Synthesis and properties of [60] fullerene-polyvinyl pyridine conjugates for photovoltaic devices. Macromol Sci Pure Appl Chem A 38(12):1481–1498

    Article  Google Scholar 

  20. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Progress Polym Sci 35(3):357–401

    Article  CAS  Google Scholar 

  21. Torosyan SA, Biglova YN, Mikheev VV, Gimalova FA, Mustafin AG, Miftakhov MS (2014) New monomers for fullerene-containing polymers. Russ J Organ Chem 2(50):179–182

    Article  CAS  Google Scholar 

  22. Chen Y, Huang Z, Kong RCS, Chen S, Shao Q, Yan X, Zhao F, Fu D (2000) Synthesis and characterization of soluble C60-chemically modified poly(p-bromostyrene). China J Polym Sci Part A Polym Chem 34(16):3297–3302

    Article  Google Scholar 

  23. Mark JE (2007) Physical properties of polymers handbook. Springer, New York (ISBN 978-0-387-31235-4)

    Book  Google Scholar 

  24. Wang C, Tao Z, Yang W, Fu S (2001) Synthesis and photoconductivity study of C60-containing styrene/acrylamide copolymers. Macromol Rapid Commun 21:98–103

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author wishes to thank Prof.M..G.H. Zaidi for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navdeep Bhullar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhullar, N., Sharma, A. Clean and dry route of synthesis of C60/polyvinylpyrrolidone composite using supercritical carbon dioxide. Polym. Bull. 76, 5939–5956 (2019). https://doi.org/10.1007/s00289-019-02694-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02694-2

Keywords

Navigation