Skip to main content
Log in

Effects of various factors on the modification of carbon nanotubes with polyvinyl alcohol in supercritical CO2 and their application in electrospun fibers

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Supercritical(SC) CO2 anti-solvent induced polymer epitaxy(SAIPE) method was used to help prepare nanohybrid carbon nanotubes(CNTs) wrapped with polyvinyl alcohol(PVA) nanocrystals. With the variation of a series of experimental conditions or peripheral effects, such as PVA concentration, CNTs concentration, and SC CO2 pressure, the optimal experimental variables for PVA-nanocrystals growing on CNTs have been found. The adsorption of polymer on CNTs via multiple weak molecular interactions has been studied by Fourier transform infrared( FTIR) spectroscopy and Raman spectroscopy. The mechanism about the formation of PVA nanocrystals on CNTs can be suggested through the experimental phenomena. These CNTs wrapped with PVA nanocrystals can be directly used as nanofillers to fabricate PVA composite fibers reinforced with CNTs by electrospinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Heer W. A., Chatelain A., Ugarte D., Science, 1995, 270, 1179

    Article  Google Scholar 

  2. Collins P. G., Arnold M. S., Avouris P., Science, 2001, 292, 706

    Article  CAS  Google Scholar 

  3. Rueckes T., Kim K., Joslevich E., Tseng G. Y., Cheung C. L., Lieber C. M., Science, 2000, 289, 94

    Article  CAS  Google Scholar 

  4. Tans S. J., Verschueren A. R. M., Dekker C., Nature, 1998, 393, 49

    Article  CAS  Google Scholar 

  5. Chen J., Hamon M. A., Hu H., Chen Y. S., Rao A. M., Eklund P. C., Haddon R. C., Science, 1998, 282, 95

    Article  CAS  Google Scholar 

  6. Zheng M., Jagota A., Semke E. D., Diner B. A., McLean R. S., Lustig S. R., Richardson R. E., Tassi N. G., Nature Mater., 2003, 2, 338

    Article  CAS  Google Scholar 

  7. Ajayan P. M., Tour J. M., Nature, 2007, 447, 1066

    Article  CAS  Google Scholar 

  8. Bekyarova E., Itkis M. E., Cabrera N., Zhao B., Yu A. P., Gao J. B., Haddon R. C., J. Am. Chem. Soc., 2005, 127, 5990

    Article  CAS  Google Scholar 

  9. O’Connell M. J., Bachilo S. M., Huffman C. B., Moore V. C., Strano M. S., Haroz E. H., Rialon K. L., Boul P. J., Noon W. H., Kittrell C., Ma J. P., Hauge R. H., Weisman R. B., Smalley R. E., Science, 2002, 297, 593

    Article  Google Scholar 

  10. Chen J., Liu H. Y., Weimer W. A., Halls M. D., Waldeck D. H., Walker G. C., J. Am. Chem. Soc., 2002, 124, 9034

    Article  CAS  Google Scholar 

  11. Pompeo F., Resasco D. E., Nano. Lett., 2002, 2, 369

    Article  CAS  Google Scholar 

  12. Cheng Q. Y., Zhou D., Han B. H., Chem. J. Chinese Universities, 2011, 32(9), 2062

    CAS  Google Scholar 

  13. Hirsch A., Angew. Chem. Int. Ed., 2002, 41, 1853

    Article  CAS  Google Scholar 

  14. Star A., Steuerman D. W., Heath J. R., Stoddart J. F., Angew. Chem. Int. Ed., 2002, 41, 2508

    Article  CAS  Google Scholar 

  15. O’Connell M. J., Boul P., Ericson L. M., Huffman C., Wang Y. H., Haroz E., Kuper C., Tour J., Ausman K. D., Smalley R. E., Chem. Phys. Lett., 2001, 342, 265

    Article  Google Scholar 

  16. Li C.Y., Li L., Cai W., Kodjie S. L., Tenneti K. K., Adv. Mater., 2005, 17, 1198

    Article  CAS  Google Scholar 

  17. Li L. Y., Li C. Y., Ni C. Y., J. Am. Chem. Soc., 2006, 128, 1692

    Article  CAS  Google Scholar 

  18. Li L. Y., Yang Y., Yang G. L., Chen X. M., Hsiao B. S., Chu B., Spanier J. E., Li C.Y., Nano. Lett., 2006, 6, 1007

    Article  CAS  Google Scholar 

  19. de Gennes P. G., Science, 1992, 256, 495

    Article  Google Scholar 

  20. Wong G. C. L., Science, 2004, 305, 948

    Article  CAS  Google Scholar 

  21. Mather P. T., Nature Mater., 2007, 6, 93

    Article  CAS  Google Scholar 

  22. Nie Z. H., Fava D., Kumacheva E., Zou S., Walker G. C., Rubinstein M., Nature Mater., 2007, 6, 609

    Article  CAS  Google Scholar 

  23. Grubbs R. B., Nature Mater., 2007, 6, 553

    Article  CAS  Google Scholar 

  24. Kim O., Je J., Baldwin J. W., Kooi S., Pehrsson P. E., Buckley L. J., J. Am. Chem. Soc., 2003, 125, 4426

    Article  CAS  Google Scholar 

  25. Zorbas V., Ortiz-Acevedo A., Dalton A. B., Yoshida M. M., Dieckmann G. R., Draper R. K., Baughman R. H., Jose-Yacaman M., Musselman I. H., J. Am. Chem. Soc., 2004, 126, 7222

    Article  CAS  Google Scholar 

  26. Dieckmann G. R., Dalton A. B., Johnson P. A., Razal J., Chen J., Giordano G. M., Muňoz E., Musselman I. H., Baughman R. H., Draper R. K., J. Am. Chem. Soc., 2003, 125, 1770

    Article  CAS  Google Scholar 

  27. Eckert C. A., Knutson B. L., Debendetti P. G., Nature, 1996, 383, 313

    Article  CAS  Google Scholar 

  28. Kendall J. L., Canelas D. A., Young J. L., de Simone J. M., Chem. Rev., 1999, 99, 543

    Article  CAS  Google Scholar 

  29. Field C. N., Hamley P. A., Webster J. M., Gregory D. H., Titman J. J., Poliakoff M., J. Am. Chem. Soc., 2000, 122, 2480

    Article  CAS  Google Scholar 

  30. Fu L., Liu Z. M., Liu Y. Q., Han B. X., Wang J. Q., Hu P. A., Cao L. C., Zhu D. B., Adv. Mater., 2004, 16, 350

    Article  CAS  Google Scholar 

  31. Watkins J. J., Blackburn J. M., McCarthy T. J., Chem. Mater., 1999, 11, 213

    Article  CAS  Google Scholar 

  32. Ye X. R., Lin Y., Wang C., Wai C. M., Adv. Mater., 2003, 15, 316

    Article  CAS  Google Scholar 

  33. Yue J., Xu Q., Zhang Z. W., Chen Z. M., Macromolecules, 2007, 40, 8821

    Article  CAS  Google Scholar 

  34. Zhang Z. W., Xu Q., Chen Z. M., Yue J., Macromolecules, 2008, 41, 2868

    Article  CAS  Google Scholar 

  35. Zheng X. L., Xu Q., Li Z. P., Sci. China Chem., 2010, 53, 1525

    Article  CAS  Google Scholar 

  36. Zhang F., Zhang H., Zhang Z. W., Chen Z. M., Xu Q., Macromolecules, 2008, 41, 4519

    Article  CAS  Google Scholar 

  37. Liu L. Q., Barber A. H., Nuriel S., Wagner H. D., Adv. Funct. Mater., 2005, 15, 975

    Article  CAS  Google Scholar 

  38. Baskaran D., Mays J. W., Bratcher M. S., Chem. Mater., 2005, 17, 3389

    Article  CAS  Google Scholar 

  39. Zhang J. H., Yang J. P., Yuan C. P., Chen G. M., Chem. Res. Chinese University, 2012, 28(1), 153

    CAS  Google Scholar 

  40. Zheng X. L., Xu Q., J. Phys. Chem. B, 2010, 114, 9435

    Article  CAS  Google Scholar 

  41. Gao Y., Li L.Y., Tan P. H., Liu L. Q., Zhang Z., Chinese Sci. Bull., 2010, 55, 3978

    Article  CAS  Google Scholar 

  42. Osswald S., Flahaut E., Gogotsi Y., Chem. Mater., 2006, 18, 1525

    Article  CAS  Google Scholar 

  43. Tan P. H., Deng Y. M., Zhao Q., Phys. Rev. B, 1998, 58, 5435

    Article  CAS  Google Scholar 

  44. Tan P. H., Zhang J., Wang X. C., Carbon, 2007, 45, 1116

    Article  CAS  Google Scholar 

  45. Yu N., He L. H., Ren Y. Y., Xu Q., Polymer, 2011, 52, 472

    Article  Google Scholar 

  46. Strano M. S., Dyke C. A., Usrey M. L., Barone P. W., Allen M. J., Shan H. W., Kittrell C., Hauge R. H., Tour J. M., Smalley R. E., Science, 2003, 301, 1519

    Article  CAS  Google Scholar 

  47. Zhou W. P., Wu Y. L., Wei F., Luo G. H., Qian W. Z., Polymer, 2005, 46, 12689

    Article  CAS  Google Scholar 

  48. Xue S. S., Sui G., Yang X. P., Chem. J. Chinese Universities, 2013, 34(2), 288

    CAS  Google Scholar 

  49. Hu Y., Zhao Y., Li Y., Xie X., J., Li H., Dai L. M., Qu L. T., Chem. Res. Chinese Universities, 2012, 28(2), 302

    CAS  Google Scholar 

  50. Fu Y., Sun L., Tian C. G., Lin H. B., Chem. J. Chinese Universities, 2013, 34(10), 2389

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Xu.

Additional information

Supported by the the National Natural Science Foundation of China(Nos.20804040, 20974102, 50955010, 51173170, 21101141, 51003098), the Program for New Century Excellent Talents in Universities(NCET) and the Open Fund of Key Laboratory of Applied Surface and Colloid Chemistry(Shaanxi Normal University) of Ministry of Education of China(No.201201).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhang, J., Guo, Y. et al. Effects of various factors on the modification of carbon nanotubes with polyvinyl alcohol in supercritical CO2 and their application in electrospun fibers. Chem. Res. Chin. Univ. 30, 690–697 (2014). https://doi.org/10.1007/s40242-014-3535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-3535-y

Keywords

Navigation