Skip to main content
Log in

Effect of dopant on the properties of polyaniline/carbon nanofiber composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyaniline-modified carbon nanofibers were prepared in the presence of five different dopant acids, namely toluene sulfonic acid (TSA), hydrochloric acid (HCl), sulfuric acid (H2SO4), phosphoric acid (H3PO4) and camphor sulfonic acid (CSA), by oxidative polymerization. A comparative study on the effect of various types of dopants on the properties of PANI/CNF composite was performed. The electrical, dielectric and thermal properties of PANI/CNF composites were studied in contrast to pure PANI. Unlike polyaniline, all polyaniline/carbon nanofiber combination resulted in enhanced electrical and dielectric properties. Higher conductivity and thermal dependence of DC conductivity were obtained for toluene sulfonic acid-doped composite. UV–Vis analysis of the composites showed that the appreciable increase in conductivity of TSA-doped PANI/CNF composite is due to the extensive electron transfer. Further, thermogravimetric analysis showed improved thermal stability compared to PANI. A significant improvement is observed for organic acid-doped composites which suggest the presence of strong interaction between π orbitals of CNF and the quinoid rings of PANI. Hence, the study indicated that the dopants had a remarkable effect on the properties of PANI/CNF composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Feast WJ, Tsibouklis J, Pouwer KL, Groenendaal L, Meijer EW (1996) Synthesis, processing and material properties of conjugated polymers. Polymer 37:5017–5047

    Article  CAS  Google Scholar 

  2. Syed AA, Dinesan MK (1991) Review: polyaniline—a novel polymeric material. Talanta 38:815–837

    Article  CAS  PubMed  Google Scholar 

  3. Park SM, Lee HJ (2005) Recent advances in electrochemical studies of π-conjugated polymers. Bull Korean Chem Soc 26:697–706

    Article  CAS  Google Scholar 

  4. Cortes MT, Sierra EV (2006) Effect of synthesis parameters in polyaniline: influence on yield and thermal behavior. Polym Bull 56:37–45

    Article  CAS  Google Scholar 

  5. Pron A, Genoud F, Menardo C, Nechtschein M (1988) The effect of the oxidation conditions on the chemical polymerization of polyaniline. Synth Met 24:193–201

    Article  CAS  Google Scholar 

  6. Kulkarni VG, Campbell LD, Mathew WR (1989) Thermal stability of polyaniline. Synth Met 30:321–325

    Article  CAS  Google Scholar 

  7. Kahol PK, Satheesh Kumar KK, Geetha S, Trivedi DC (2003) Effect of dopants on electron localization length in polyaniline. Synth Met 139:191–200

    Article  CAS  Google Scholar 

  8. Yang S, Chen W, You K (1997) The properties of polyaniline–polyelectrolyte complexes. Synth Met 84:77–78

    Article  CAS  Google Scholar 

  9. Li S, Cao Y, Xue Z (1987) Soluble polyaniline. Synth Met 20:141–149

    Article  CAS  Google Scholar 

  10. Shannon K, Fernandez J (1994) Preparation and properties of water-soluble, poly(styrenesulfonic acid)-doped polyaniline. J Chem Soc Chem Commun 5:643–644

    Article  Google Scholar 

  11. Tazou K, Gregory RV (1993) A method to prepare soluble polyaniline salt solutions—in situ doping of PANI base with organic dopants in polar solvents. Synth Met 53:365–377

    Article  Google Scholar 

  12. Sinha S, Bhadra S, Khastgir D (2009) Effect of dopant type on the properties of polyaniline. J Appl Polym Sci 112:3135–3140

    Article  CAS  Google Scholar 

  13. Levon K, Ho KH, Zheng WY, Laakso J, Karna T, Taka T, Osterholm JE (1995) Thermal doping of polyaniline with dodecylbenzene sulfonic acid without auxiliary solvents. Polymer 36:2733–2738

    Article  CAS  Google Scholar 

  14. Bhadra S, Khastgir D, Sinha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810

    Article  CAS  Google Scholar 

  15. Maser WK, Benito AM, Callejas MA, Seeger T, Martı́nez MT, Schreiber J, Muszynski J, Chauvet O, Osváth Z, Koós AA, Biró LP (2003) Synthesis and characterization of new polyaniline/nanotube composites. Mater Sci Eng 23:87–91

    Article  Google Scholar 

  16. Cochet M, Maser WK, Benito AM, Callejas MA, Martinez MT, Benoit J, Schreiber J, Chauvet O (2001) Synthesis of a new polyaniline/nanotube composite: “in situ” polymerisation and charge transfer through site-selective interaction. Chem Commun 16:1450–1451

    Article  CAS  Google Scholar 

  17. Paligová M, Vilčáková J, Sáha P, Křesálek V, Stejskal J, Quadrat O (2004) Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base. Phys A 335:421

    Article  CAS  Google Scholar 

  18. Dong H, Prasad S, Nayme V, Wayne EJ (2004) Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates. Chem Mater 16:371–373

    Article  CAS  Google Scholar 

  19. Li Y, Wang J, Li X, Liu J, Geng D, Yang J, Li R, Sun X (2011) Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochem Commun 13:668–672

    Article  CAS  Google Scholar 

  20. Lim S, Yoon SH, Mochida I, Jung DH (2009) Direct synthesis and structural analysis of nitrogen-doped carbon nanofibers. Langmuir 25:8268–8273

    Article  CAS  PubMed  Google Scholar 

  21. Chan HSO, Ng SC, Sim WS, Seow SH, Tan KL, Tan BTG (1993) Synthesis and characterization of conducting poly(o-aminobenzyl alcohol) and its copolymers with aniline. Macromolecules 26:144–150

    Article  CAS  Google Scholar 

  22. Guo Y, Zhou Y (2007) Polyaniline nanofibers fabricated by electrochemical polymerization: a mechanistic study. Eur Polym J 43:2292–2297

    Article  CAS  Google Scholar 

  23. Sedenkove I, Trchova M, Blinova NV, Stejskal J (2006) In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. Thin Solid Films 515:1640–1646

    Article  CAS  Google Scholar 

  24. Kuramoto N, Genies EM (1995) Micellar chemical polymerization of aniline. Synth Met 68:191–194

    Article  CAS  Google Scholar 

  25. Zhang L (2007) The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of β-naphthalenesulfonic acid. Electrochim Acta 52:6969–6975

    Article  CAS  Google Scholar 

  26. Fu Y, Weiss RA (1997) Protonation of polyaniline with lightly sulfonated polystyrene. Synth Met 84:103–104

    Article  CAS  Google Scholar 

  27. Koul S, Chandra R, Dhawan SK (2000) Conducting polyaniline composite for ESD and EMI at 101 GHz. Polymer 41:9305–9310

    Article  CAS  Google Scholar 

  28. Ghosh P, Siddhanta SK, RejaulHaque S, Chakrabarti A (2001) Stable polyaniline dispersions prepared in nonaqueous medium: synthesis and characterization. Synth Met 123:83–89

    Article  CAS  Google Scholar 

  29. Zengin H (2002) Carbon nanotube doped polyaniline. Adv Mater 14:1480–1483

    Article  CAS  Google Scholar 

  30. Hopkins AR, Rasmussen PG, Basheer RA (1996) Characterization of solution and solid state properties of undoped and doped polyanilines processed from hexafluoro-2-propanol. Macromolecules 29:7838–7846

    Article  CAS  Google Scholar 

  31. Mathew H, Punnackal VS, Kuriakose S, Kumari BS (2013) Synthesis and electrical characterization of polyaniline-multiwalled carbon nanotube composites with different dopants. A. Manuel, IJSRP, 3, 1

  32. Pron A, Rannou P (2002) Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog Polym Sci 27:135–190

    Article  CAS  Google Scholar 

  33. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19:852–857

    Article  CAS  Google Scholar 

  34. He F, Lau S, Chan HL, Fan JT (2009) High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater 21:710–715

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil K. Narayanankutty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anju, V.P., Narayanankutty, S.K. Effect of dopant on the properties of polyaniline/carbon nanofiber composites. Polym. Bull. 76, 5253–5267 (2019). https://doi.org/10.1007/s00289-018-2649-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2649-7

Keywords

Navigation