Skip to main content
Log in

Hybrid nanocomposite based on poly-3-amine-7-methylamine-2-methylphenazine and single-walled carbon nanotubes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A polymer–carbon hybrid nanocomposite based on thermostable electroactive poly-3-amine-7-methylamine-2-methylphenazine (PAMMP) and single-walled carbon nanotubes (SWCNT) was synthesized for the first time via in situ oxidative polymerization. The SWCNT/PAMMP nanocomposite material was characterized by means of Fourier transform infrared spectroscopy, solid-state high-resolution magic angle spinning 13C NMR spectroscopy, X-ray diffraction, transmission and field emission scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis. The chemical structure of the synthesized SWCNT/PAMMP nanocomposite, as well as its thermal and electrical properties under different synthesis conditions, was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC (1999) Dissolution of single-walled carbon nanotubes. Adv Mater 11:834–840

    Article  CAS  Google Scholar 

  3. Riggs JE, Guo Z, Carroll DL, Sun Y-P (2000) Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc 122:5879–5880

    Article  CAS  Google Scholar 

  4. Lota K, Khomenko V, Frackowiak E (2004) Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solids 65:295–301

    Article  CAS  Google Scholar 

  5. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  CAS  PubMed  Google Scholar 

  6. Dai L, Mau AVH (2001) Controlled synthesis and modification of carbon nanotubes and C60: carbon nanostructures for advanced polymeric composite materials. Adv Mater 13:899–913

    Article  CAS  Google Scholar 

  7. Wu TM, Lin YW, Liao CS (2005) Preparation and characterization of polyaniline/multiwalled carbon nanotube composites. Carbon 43:734–740

    Article  CAS  Google Scholar 

  8. Wu TM, Lin YW (2006) Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotube composites. J Polym Sci Polym Chem 44:6449–6457

    Article  CAS  Google Scholar 

  9. Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57:1295–1325

    Article  CAS  Google Scholar 

  10. MacDiarmid AG, Jones WE Jr, Norris ID, Gao J, Johnson AT Jr, Pinto NJ, Hone J, Han B, Ko FK, Okuzaki H, Llaguno M (2001) Electrostatically-generated nanofibers of electronic polymers. Synth Met 119:27–30

    Article  CAS  Google Scholar 

  11. Sapurina IYu, Stejskal J (2010) The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russ Chem Rev 79:1123–1143

    Article  CAS  Google Scholar 

  12. Song E, Choi J-W (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3:498–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gerasin VA, Antipov EM, Karbushev VV, Kulichikhin VG, Karpacheva GP, Talroze RV, Kudryavtsev YV (2013) New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russ Chem Rev 82:303–332

    Article  CAS  Google Scholar 

  14. Jin L, Bower C, Zhou O (1998) Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett 73:1197–1199

    Article  CAS  Google Scholar 

  15. Jin Zh, Pramoda KP, Xu G, Goh SH (2001) Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chem Phys Lett 337:43–47

    Article  CAS  Google Scholar 

  16. Zengin H, Zhou W, Jin J, Czerw R, Smith DW Jr, Echegoyen L, Carroll DL, Foulger SH, Ballato J (2002) Carbon nanotube doped polyaniline. Adv Mater 14:1480–1483

    Article  CAS  Google Scholar 

  17. Cheng G, Zhao J, Tu Y, He P, Fang Y (2005) A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole. Anal Chim Acta 533:11–16

    Article  CAS  Google Scholar 

  18. Qu F, Yang M, Jiang J, Shen G, Yu R (2005) Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film. Anal Biochem 344:108–114

    Article  CAS  PubMed  Google Scholar 

  19. Okotrub AV, Asanov IP, Galkin PS, Bulusheva LG, Chekhova GN, Kurenya AG, Shubin YuV (2010) Composites based on polyaniline and aligned carbon nanotubes. Polym Sci B 52:101–108

    Google Scholar 

  20. Jia Zh, Wang Zh, Xu C, Liang J, Wei B, Wu D, Zhu Sh (1999) Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A 271:395–400

    Article  Google Scholar 

  21. Ham HT, Choi YS, Jeong N, Chung IJ (2005) Single-wall carbon nanotubes covered with polypyrrole nanoparticles by the miniemulsion polymerization. Polymer 46:6308–6315

    Article  CAS  Google Scholar 

  22. Zhang X, Zhang J, Liu Z (2004) Tubular composite of doped polyaniline with multi-walled carbon nanotubes. Appl Phys A Mater Sci Process 80:1813–1817

    Article  CAS  Google Scholar 

  23. Sainz R, Benito AM, Martínez MT, Galindo JF, Sotres J, Baró AM, Corraze B, Chauvet O, Maser WK (2005) Soluble self-aligned carbon nanotube/polyaniline composites. Adv Mater 17:278–281

    Article  CAS  Google Scholar 

  24. Cochet M, Maser WK, Benito AM, Callejas MA, Martínez MT, Benoit J-M, Schreiber J, Chauvet O (2001) Synthesis of a new polyaniline/nanotube composite: “in situ” polymerisation and charge transfer through site-selective interaction. Chem Commun 16:1450–1451

    Article  CAS  Google Scholar 

  25. Deng M, Yang B, Hu Y (2005) Polyaniline deposition to enhance the specific capacitance of carbon nanotubes for supercapacitors. J Mater Sci 40:5021–5023

    Article  CAS  Google Scholar 

  26. Yu Y, Che B, Si Zh, Li L, Chen W, Xue G (2005) Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion. Synth Met 150:271–277

    Article  CAS  Google Scholar 

  27. Philip B, Xie J, Abraham JK, Varadan VK (2005) Polyaniline/carbon nanotube composites: starting with phenylamino functionalized carbon nanotubes. Polym Bull 53:127–138

    Article  CAS  Google Scholar 

  28. Park Ch, Ounaies Z, Watson KA, Crooks RE, Smith J Jr, Lowther ShE, Connell JW, Siochi EJ, Harrison JS, St Clair TL (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364:303–308

    Article  CAS  Google Scholar 

  29. Jeevananda T, Siddaramaiah Lee TS, Lee JH, Samir OM, Somashekar R (2008) Polyaniline-multiwalled carbon nanotube composites: characterization by WAXS and TGA. J Appl Polym Sci 109:200–210

    Article  CAS  Google Scholar 

  30. Zelikman E, Narkis M, Siegmann A, Valentini L, Kenny JM (2008) Polyaniline/multiwalled carbon nanotube systems: dispersion of CNT and CNT/PANI interaction. Polym Eng Sci 48:1871–1877

    Article  CAS  Google Scholar 

  31. Kinlen PJ, Liu J, Ding Y, Graham CR, Remsen EE (1998) Emulsion polymerization process for organically soluble and electrically conducting polyaniline. Macromolecules 31:1735–1744

    Article  CAS  Google Scholar 

  32. Kim J, Kwon S, Ihm DW (2007) Synthesis and characterization of organic soluble polyaniline prepared by one-step emulsion polymerization. Curr Appl Phys 7:205–210

    Article  Google Scholar 

  33. Xu J, Yao P, Liu L, Jiang Zh, He F, Li M, Zou J (2010) Synthesis and characterization of an organic soluble and conducting polyaniline-grafted multiwalled carbon nanotube core–shell nanocomposites by emulsion polymerization. J Appl Polym Sci 118:2582–2591

    Article  CAS  Google Scholar 

  34. Konyushenko EN, Stejskal J, Trchova M, Hradil J, Kovarova J, Prokes J, Cieslar M, Hwang J-Y, Chen K-H, Sapurina I (2006) Multi-wall carbon nanotubes coated with polyaniline. Polymer 47:5715–5723

    Article  CAS  Google Scholar 

  35. Ginic-Markovic M, Matisons JG, Cervini R, Simon GP, Fredericks PM (2006) Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization. Chem Mater 18:6258–6265

    Article  CAS  Google Scholar 

  36. Suckeveriene RY, Zelikman E, Mechrez G, Tzur A, Frisman I, Cohen Y, Narkis M (2011) Synthesis of hybrid polyaniline/carbon nanotube nanocomposites by dynamic interfacial inverse emulsion polymerization under sonication. J Appl Polym Sci 120:676–682

    Article  CAS  Google Scholar 

  37. Zelikman E, Suckeveriene RY, Mechrez G, Narkis M (2010) Fabrication of composite polyaniline/CNT nanofiber/s using an ultrasonically assisted dynamic inverse emulsion polymerization technique. Polym Adv Technol 21:150–152

    Article  CAS  Google Scholar 

  38. Hong S, Kim M, Hong ChK, Jung D, Shim SE (2008) Encapsulation of multi-walled carbon nanotubes by poly(4-vinylpyridine) and its dispersion stability in various solvent media. Synth Met 158:900–907

    Article  CAS  Google Scholar 

  39. Ozkan SZh, Karpacheva GP, Bondarenko GN, Kolyagin YuG (2015) Polymers based on 3-amine-7-dimethylamine-2-methylphenazine hydrochloride: synthesis, structure, and properties. Polym Sci B 57:106–115

    CAS  Google Scholar 

  40. Karyakin YuV, Angelov II (1974) Pure chemical reagents. Khimiya, Moscow (in Russian)

    Google Scholar 

  41. Thakur RS, Kurur ND, Madhu PK (2006) Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR. Chem Phys Lett 426:459–463

    Article  CAS  Google Scholar 

  42. Earl WL, Vanderhart DL (1982) Measurement of 13C chemical shifts in solids. J Magn Reson 48:35–54

    CAS  Google Scholar 

  43. Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486

    Article  CAS  PubMed  Google Scholar 

  44. Rao PS, Subrahmanya S, Sathyanarayana DN (2002) Inverse emulsion polymerization: a new route for the synthesis of conducting polyaniline. Synth Met 128:311–316

    Article  CAS  Google Scholar 

  45. Ping Z (1996) In situ FTIR–attenuated total reflection spectroscopic investigations on the base–acid transitions of polyaniline. Base–acid transition in the emeraldine form of polyaniline. J Chem Soc Faraday Trans 92:3063–3067

    Article  CAS  Google Scholar 

  46. Berezin BD, Berezin DB (1999) Course of modern organic chemistry. Manual for University, Vysshaya shkola, Moscow (in Russian)

    Google Scholar 

  47. Beloborodov VL, Zurabyan SE, Luzin AP, Tyukavkina NA (2002) Organic chemistry. Manual for Universities. Main Course. DROFA, Moscow (in Russian)

    Google Scholar 

  48. Kazitsina LA, Kupletskaya NB (1971) Application of UV, IR, NMR, and mass spectroscopy in organic chemistry. Vysshaya shkola, Moscow (in Russian)

    Google Scholar 

  49. Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503

    Article  CAS  Google Scholar 

  50. Hikihara T, Hu X (2003) Numerical renormalization study on magnetic properties of edge states in carbon nanotubes. Phys B Condens Matter 329:1166–1167

    Article  CAS  Google Scholar 

  51. Majhi M, Choudhary RB, Thakur AK, Omar FS, Duraisamy N, Ramesh K, Ramesh S (2018) CoCl2-doped polyaniline composites as electrode materials with enhanced electrochemical performance for supercapacitor application. Polym Bull 75:1563–1578

    Article  CAS  Google Scholar 

  52. Rehwald W, Kiess H, Binggeli B (1987) Frequency dependent conductivity in polymers and other disordered materials. Z Phys B Condens Matter 68:143–148

    Article  CAS  Google Scholar 

  53. Dyre JC (1988) The random free-energy barrier model for ac conduction in disordered solids. J Appl Phys 64:2456–2468

    Article  Google Scholar 

Download references

Acknowledgements

This work was done as part of TIPS RAS State Plan. The equipment from the collective exploitation center “New petrochemical processes, polymer composites and adhesives” was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sveta Zhiraslanovna Ozkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkan, S.Z., Karpacheva, G.P. & Kolyagin, Y.G. Hybrid nanocomposite based on poly-3-amine-7-methylamine-2-methylphenazine and single-walled carbon nanotubes. Polym. Bull. 76, 5285–5300 (2019). https://doi.org/10.1007/s00289-018-2644-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2644-z

Keywords

Navigation