Skip to main content
Log in

A novel method to prepare three-component hydrogels as neural tissue engineering

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Cellulosic nanofibers (CNFs) from Catha Edulis, Arabic Gum, and poly(vinyl alcohol) were blended to prepare novel nebulizing porous nanocomposites films (NCFs). Glutaraldehyde (GLA) was used as a crosslinker. These porous films were characterized by using FTIR, SEM, and DSC. The effects of various factors, such as CNFs concentration, and pH of the medium, on the swelling behavior of NCFs were estimated. The behavior of nebulizing films were tested as well as their possible antimicrobial activities against pathogenic bacteria like C. Albicans (fungus), B. subtilis (G+Ve), S. aureus (G+Ve), P. Vulgaris (G−Ve), and E. Carotovora (G−Ve).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tally M, Atassi Y (2015) Optimized synthesis and swelling properties of a pH-sensitive semi-IPN superabsorbent polymer based on sodium alginate-g-poly(acrylic acid-co-acrylamide) and polyvinylpyrrolidone and obtained via microwave irradiation. J Polym Res 22:1–13. https://doi.org/10.1007/s10965-015-0822-3

    Article  CAS  Google Scholar 

  2. Abdel Bary EM, Fekri A, Soliman YA, Harmal AN (2017) Novel superabsorbent membranes made of PVA and Ziziphus spina-christi cellulose for agricultural and horticultural applications. New J Chem 41:9688–9700. https://doi.org/10.1039/C7NJ01676J

    Article  CAS  Google Scholar 

  3. Singh B, Sharma S, Dhiman A (2017) Acacia gum polysaccharide based hydrogel wound dressings: synthesis, characterization, drug delivery and biomedical properties. Carbohydr Polym 165:294–303. https://doi.org/10.1016/j.carbpol.2017.02.039

    Article  CAS  PubMed  Google Scholar 

  4. Kamoun EA, Kenawy ERS, Tamer TM et al (2015) Poly(vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab J Chem 8:38–47. https://doi.org/10.1016/j.arabjc.2013.12.003

    Article  CAS  Google Scholar 

  5. Hinman CD, Maibach H (1963) Effect of air exposure and occlusion on experimental human skin wounds. Nature 200:377–378. https://doi.org/10.1038/200377a0

    Article  CAS  PubMed  Google Scholar 

  6. Kim JO, Park JK, Kim JH et al (2008) Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. Int J Pharm 359:79–86. https://doi.org/10.1016/j.ijpharm.2008.03.021

    Article  CAS  PubMed  Google Scholar 

  7. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12

    Article  Google Scholar 

  8. Manawi Y, Kochkodan V, Mohammad AW, Ali M (2017) Arabic gum as a novel pore-forming and hydrophilic agent in polysulfone membranes. J Memb Sci 529:95–104. https://doi.org/10.1016/j.memsci.2017.02.002

    Article  CAS  Google Scholar 

  9. Rezaei A, Tavanai H, Nasirpour A (2016) Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin. Int J Biol Macromol 91:536–543. https://doi.org/10.1016/j.ijbiomac.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  10. Padil VVT, Nguyen NHA, Sevcu A, Cernik M (2015) Fabrication, characterization, and antibacterial properties of electrospun membrane composed of gum karaya, polyvinyl alcohol, and silver nanoparticles. J Nanomater 2015:1–10. https://doi.org/10.1155/2015/750726

    Article  CAS  Google Scholar 

  11. Gupta C, Chawla P, Arora S et al (2015) Iron microencapsulation with blend of gum arabic, maltodextrin and modified starch using modified solvent evaporation method—milk fortification. Food Hydrocoll 43:622–628. https://doi.org/10.1016/j.foodhyd.2014.07.021

    Article  CAS  Google Scholar 

  12. Onyari JM, Mulaa F, Muia J, Shiundu P (2008) Biodegradability of poly(lactic acid), preparation and characterization of PLA/gum Arabic blends. J Polym Environ 16:205–212. https://doi.org/10.1007/s10924-008-0096-5

    Article  CAS  Google Scholar 

  13. Al-Mureish K (2014) Investigation on allelopathic effects of khat leaves residues and alleviative effects of salicylic acid in wheat roots. Plant 2:54–59. https://doi.org/10.11648/j.plant.20140205.11

    Article  Google Scholar 

  14. Jonoobi M, Oladi R, Davoudpour Y et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. https://doi.org/10.1007/s10570-015-0551-0

    Article  CAS  Google Scholar 

  15. Jiang F, Hsieh Y (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68. https://doi.org/10.1016/j.carbpol.2014.12.064

    Article  CAS  PubMed  Google Scholar 

  16. Li HZ, Chen SC, Wang YZ (2015) Preparation and characterization of nanocomposites of polyvinyl alcohol/cellulose nanowhiskers/chitosan. Compos Sci Technol 115:60–65. https://doi.org/10.1016/j.compscitech.2015.05.004

    Article  CAS  Google Scholar 

  17. Bana R, Banthia AK (2011) Mechanical and thermal analysis of poly(vinyl-alcohol) and modified wood dust composites. J Wood Chem Technol 31:218–232. https://doi.org/10.1080/02773813.2010.523160

    Article  CAS  Google Scholar 

  18. Kamoun EA, Kenawy E-RS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233. https://doi.org/10.1016/j.jare.2017.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qiu K, Netravali AN (2012) Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos Sci Technol 72:1588–1594. https://doi.org/10.1016/j.compscitech.2012.06.010

    Article  CAS  Google Scholar 

  20. Abdel Bary EM, Harmal AN, Saeed A, Gouda MA (2018) Design, synthesis, characterization, swelling and in vitro drug release behavior of composite hydrogel beads based on methotrexate and chitosan incorporating antipyrine moiety. Polym Plast Technol Eng. https://doi.org/10.1080/03602559.2018.1447126

    Article  Google Scholar 

  21. Abdel Bary EM, Fekri A, Soliman YA, Harmal AN (2016) Biodegradable polymer nanocomposites based on polyvinyl alcohol and nano-rice straw. Indian J Appl Res 6:713–721. https://doi.org/10.15373/2249555X

    Article  Google Scholar 

  22. Abdel Bary EM, Fekri A, Soliman YA, Harmal AN (2018) Characterisation and swelling–deswelling properties of superabsorbent membranes made of PVA and cellulose nanocrystals. Int J Environ Stud. https://doi.org/10.1080/00207233.2018.1472448

    Article  Google Scholar 

  23. Abdel Bary EM, Fekri A, Soliman YA, Harmal AN (2018) Characterization and swelling–deswelling properties of porous superabsorbent hydrogel membranes made of PVA and Ziziphus spina-christi fibers reinforced with nanosilica manufactured by compression moulding process. Polym Bull 1:1. https://doi.org/10.1007/s00289-018-2315-0

    Article  CAS  Google Scholar 

  24. Peresin MS, Habibi Y, Zoppe JO et al (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681. https://doi.org/10.1021/bm901254n

    Article  CAS  Google Scholar 

  25. Qin L, Qiu J, Liu M et al (2011) Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem Eng J 166:772–778. https://doi.org/10.1016/j.cej.2010.11.039

    Article  CAS  Google Scholar 

  26. Sacui IA, Nieuwendaal RC, Burnett DJ et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138. https://doi.org/10.1021/am500359f

    Article  CAS  PubMed  Google Scholar 

  27. Abdel Bary EM, Soliman YA, Fekri A, Harmal AN (2018) Aging of novel membranes made of PVA and cellulose nanocrystals extracted from Egyptian rice husk manufactured by compression moulding process. Int J Environ Stud 75:750–762. https://doi.org/10.1080/00207233.2018.1456862

    Article  CAS  Google Scholar 

  28. Abdel Bary EM, Fekri A, Soliman YA, Harmal AN (2018) Aging of membranes prepared from PVA and cellulose nanocrystals by use of thermal compression. Int J Environ Stud 75:950–964. https://doi.org/10.1080/00207233.2018.1472448

    Article  CAS  Google Scholar 

  29. Abdel Bary EM, Fekri A, Soliman YA, Harmal AN (2018) Chemical and biology aging of novel green membranes made of PVA and wood flour fibers reinforced with nanosilica manufactured by compression molding process. Int J Polym Anal Charact 23:159–169. https://doi.org/10.1080/1023666X.2017.1404271

    Article  Google Scholar 

  30. Mansur HS, Mansur AAP (2005) Small angle X-ray scattering, FTIR and SEM characterization of nanostructured PVA/TEOS hybrids by chemical crosslinking. Mater Res Soc 873:1–6. https://doi.org/10.1557/PROC-873-K1.9

    Article  Google Scholar 

  31. Shi R, Bi J, Zhang Z et al (2008) The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr Polym 74:763–770. https://doi.org/10.1016/j.carbpol.2008.04.045

    Article  CAS  Google Scholar 

  32. Asim S, Wasim M, Sabir A et al (2018) The effect of nanocrystalline cellulose/Gum Arabic conjugates in crosslinked membrane for antibacterial, chlorine resistance and boron removal performance. J Hazard Mater 343:68–77. https://doi.org/10.1016/j.jhazmat.2017.09.023

    Article  CAS  PubMed  Google Scholar 

  33. Yeo H-T, Lee S-T, Han M-J (2000) Role of a polymer additive in casting solution in preparation of phase inversion polysulfone membranes. J Chem Eng Jpn 33:180–184

    Article  CAS  Google Scholar 

  34. Jung B, Joon KY, Kim B, Rhee HW (2004) Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J Memb Sci 243:45–57. https://doi.org/10.1016/j.memsci.2004.06.011

    Article  CAS  Google Scholar 

  35. Chakrabarty B, Ghoshal AK, Purkait MK (2008) Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J Memb Sci 315:36–47. https://doi.org/10.1016/j.memsci.2008.02.027

    Article  CAS  Google Scholar 

  36. Cândido JDS, Pereira AGB, Fajardo AR et al (2013) Poly(acrylamide-co-acrylate)/rice husk ash hydrogel composites. II. Temperature effect on rice husk ash obtention. Compos Part B Eng 51:246–253. https://doi.org/10.1016/j.compositesb.2013.03.027

    Article  CAS  Google Scholar 

  37. Awasthi S, Singhal R (2013) A study on interaction and solubility of acetaminophen with poly(AM-co-HEA-co-AA) hydrogels by DSC: effect on drug diffusion behavior. J Macromol Sci Part A 50:72–89. https://doi.org/10.1080/10601325.2012.736266

    Article  CAS  Google Scholar 

  38. Kasgoz H, Durmus A (2008) Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties. Polym Adv Technol 19:838–845. https://doi.org/10.1002/pat

    Article  CAS  Google Scholar 

  39. Gharekhani H, Olad A, Mirmohseni A, Bybordi A (2017) Superabsorbent hydrogel made of NaAlg-g-poly(AA-co-AAm) and rice husk ash: synthesis, characterization, and swelling kinetic studies. Carbohydr Polym 168:1–13. https://doi.org/10.1016/j.carbpol.2017.03.047

    Article  CAS  PubMed  Google Scholar 

  40. Spagnol C, Rodrigues FHA, Pereira AGB et al (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym 87:2038–2045. https://doi.org/10.1016/j.carbpol.2011.10.017

    Article  CAS  Google Scholar 

  41. Rowbotham JS, Dyer PW, Greenwell HC et al (2013) Copper(II)-mediated thermolysis of alginates: a model kinetic study on the influence of metal ions in the thermochemical processing of macroalgae. Interface Focus 3:1–16

    Article  Google Scholar 

  42. Hu D, Wang L (2016) Physical and antibacterial properties of polyvinyl alcohol films reinforced with quaternized cellulose. J Appl Polym Sci 133:1–8. https://doi.org/10.1002/app.43552

    Article  CAS  Google Scholar 

  43. Vellora V, Padil T, Nguyen NHA et al (2015) Surface and coatings technology synthesis, fabrication and antibacterial properties of a plasma modified electrospun membrane consisting of gum Kondagogu, dodecenyl succinic anhydride and poly(vinyl alcohol). Surf Coat Technol 271:32–38. https://doi.org/10.1016/j.surfcoat.2015.01.035

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar N. Harmal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Bary, E.M., Harmal, A.N. A novel method to prepare three-component hydrogels as neural tissue engineering. Polym. Bull. 76, 4451–4468 (2019). https://doi.org/10.1007/s00289-018-2617-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2617-2

Keywords

Navigation