Skip to main content
Log in

Thermal degradation and crystallization kinetics studies on synthesized calcium mercaptosuccinate end-capped poly(ε-caprolactone) nanocomposite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The calcium mercaptosuccinate (Ca-MS) functionalized poly(ε-caprolactone) (PCL) was successfully synthesized by ring-opening polymerization (ROP) method at 160 °C for 2 h under nitrogen atmosphere with mild stirring in the presence of stannous octoate (SO) as ROP catalyst. The synthesized Ca-MS functionalized PCL was characterized by FTIR spectroscopy, NMR spectroscopy, atomic force microscopy, HRTEM and polarized optical microscopy (POM) like analytical techniques. The microstructure of Ca-MS nucleated PCL crystals was analysed by POM. The thermal properties of Ca-MS functionalized PCL were examined using differential scanning calorimetry and thermogravimetric analysis techniques. The non-isothermal crystallization and degradation kinetic studies were carried out to assess the crystallinity as well as the energy of activation (Ea) of Ca-MS functionalized PCL. The FTIR spectrum showed a peak at 1720 cm−1 corresponding to the carbonyl stretching of PCL. The 1H-NMR spectrum showed an alkoxy proton signal at 4.1 ppm. The non-isothermal crystallization kinetic study showed the 3D crystal growth with the Ea value of 142.4 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sung GA, Chang GC (2004) Synthesis and characterization of amphiphilic poly(caprolactone) star block copolymers. Macromol Rapid Commun 25:618–622

    Article  CAS  Google Scholar 

  2. Vroman I, Tighzert L (2009) Bio-degradable polymers. Materials 2:307–344

    Article  CAS  PubMed Central  Google Scholar 

  3. Ayala GG, Pace ED, Laurienzo P, Pantalena D, Somma E, Nobila MR (2009) Poly(ε-caprolactone) modified by functional groups: preparation and chemical-physical investigation. Eur Polym J 45:3217–3229

    Article  CAS  Google Scholar 

  4. Ludueña LN, Alvarez VA, Vazquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 461:121–129

    Article  CAS  Google Scholar 

  5. Liao L, Zhang C, Gong S (2007) Preparation of poly(ε-caprolactone)/clay nanocomposites by microwave assisted in situ ring opening polymerization. Macromol Rapid Commun 28:1148–1154

    Article  CAS  Google Scholar 

  6. Bryan GO, Wong BM, Mcelhanon JR (2010) Stress sensing in polycaprolactone films via an embedded photochromic compound. Appl Mater Interfaces 2:1594–1600

    Article  CAS  Google Scholar 

  7. Sivabalan A, Meenarathi B, Palanikumar S, Anbarasan R (2014) Synthesis and characterization of poly(caprolactone): a comparative study. Int J Sci Res Eng Tech 1:9–14

    Google Scholar 

  8. Gosur M, Yilmaz F, Kilic A, Demirei A, Kosemen A, San SE (2010) Synthesis, characterization, electrochromic properties, and electrochromic device application of a novel star polymer consisting of thiophene end-capped poly(ε-caprolactone) arms emanating from a hexafunctional cyclotriphosphazene core. J Polym Sci A Polym Chem 48:3668–3682

    Article  CAS  Google Scholar 

  9. Meenarathi B, Siva P, Palanikumar S, Kannammal L, Anbarasan R (2016) Synthesis, characterization and drug release activity of poly(caprolactone)/Fe3O4 nanocomposites. Nanocomposites 2:98–107

    Article  CAS  Google Scholar 

  10. Pappalardo D, Ahnumziata L, Pellecchia C (2009) Synthesis and spectroscopic studies of macrocyclic polystyrene containing two fluorene units and single 9,10-anthracenylidene group. Macromolecules 42:6015–6062

    Article  CAS  Google Scholar 

  11. Sivabalan B, Meenarathi S, Palanikumar R (2014) Synthesis, characterization, application and band gap study of calcium mercaptosuccinate. J Sci Res Eng Tech 1:9–14

    Google Scholar 

  12. Jiang L, Lou W, Sun L, Xu Z (2005) Ring opening polymerization of caprolactone with a divalent samarium bis(phosphido) complex. J Appl Polym Sci 98:1558–1564

    Article  CAS  Google Scholar 

  13. Chen HH, Anbarasan R, Kuo LS, Chen PH (2011) A novel report on Eosin Y functionalized MWCNT as an initiator for the ring opening polymerization of ε-caprolactone. Mater Chem Phys 126:584–590

    Article  CAS  Google Scholar 

  14. Contreras JM, Medina D, López-Carrasquero F, Contreras RR (2013) Ring opening polymerization of ε-caprolactone initiated by samarium acetate. J Polym Res 20:244–249

    Article  CAS  Google Scholar 

  15. Monelave M, Contreras JM, Laredo E, Carrasquero FL (2010) Ring opening polymerization of (R, S)-β-butyrolactone and caprolactone using sodium hydride as initiator. Exp Polym Lett 7:431–441

    Google Scholar 

  16. Persenaire O, Alexandre M, Degée P, Dubois P (2001) Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone). Biomacromolecules 2:288–294

    Article  CAS  PubMed  Google Scholar 

  17. Annette C, Renouf G, John R, David FF, Ruth EC (2005) The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA. Biomaterials 26:5771–5782

    Article  CAS  Google Scholar 

  18. Tsuji H, Ikada Y (1995) Synthesis and spectroscopic studies of macrocyclic polystyrene containing two fluorene units and single 9,10-anthracenylidene group. Polymer 6:2709–2716

    Article  Google Scholar 

  19. Yaming W, Rodriguez-Perez A, Reis L, Mano F (2005) Thermal and thermomechanical behaviour of poly(caprolactone) and poly(caprolactone)/starch blends for biomedical applications. Macromol Mater Eng 290:792–801

    Article  CAS  Google Scholar 

  20. Stavroula G, George Z, Papageorgiou DN (2012) Crystallization of novel poly(ε-caprolactone)-block-poly(propyleneadipate) copolymers. J Therm Anal Calorim 108:633–645

    Article  CAS  Google Scholar 

  21. Achla S, Miti N, Joesmon J (2017) Non-isothermal crystallization and microstructural behaviour of poly(ε-caprolactone) and granular tapioca starch-based biocomposite. Int J Polym Anal Charact 22:222–236

    Article  CAS  Google Scholar 

  22. Vackova T, Ostafinska A, Kova SK, Nevoralova M, Slouf M (2017) Impact of particle morphology on structure, crystallization kinetics, and properties of PCL composites with TiO2 based particles. Polym Bull 74:445–464

    Article  CAS  Google Scholar 

  23. Nanaki SN, Papageorgion GZ, Bikiaris DN (2012) Crystallization of novel poly(caprolactone-block-propyladipate) copolymers. J Therm Anal Calorim 108:633–645

    Article  CAS  Google Scholar 

  24. Su TT, Jiang H, Gong H (2008) Thermal stabilities and the thermal degradation kinetics of poly(ε-caprolactone). Polym Plast Technol Eng 47:398–403

    Article  CAS  Google Scholar 

  25. Wang XL, Huang FY, Zhou Y, Wang YZ (2009) Non-isothermal crystallization kinetics of poly(ε-caprolactone)/montmorillonite nanocomposites. J Macromol Sci Part B Phys 48:710–722

    Article  CAS  Google Scholar 

  26. Chrissafis K, Antoniadis G, Paraskevopoulos KM, Vassiliou A, Bikiaris DN (2007) Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(e-caprolactone) nanocomposites. Compos Sci Technol 67:2165–2174

    Article  CAS  Google Scholar 

  27. Vyazovkin S, Sbirrazzuoli N (2003) Estimating the activation energy for non-isothermal crystallization of polymer melts. J Therm Anal Calorim 72:681–686

    Article  CAS  Google Scholar 

  28. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  29. Demir P (2017) Investigation of thermal degradation kinetics of poly(ε-caprolactone) grafted onto PEMA-co-PHEMA. J Sci Eng 17:73–85

    Google Scholar 

  30. Chrissafis K (2009) Kinetics of thermal degradation of polymers: complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim 95:273–283

    Article  CAS  Google Scholar 

  31. Meenarathi B, Siva P, Palanikumar S, Kannammal L, Anbarasan R (2016) Synthesis, characterization and drug release activity of poly(ε-caprolactone)/Fe3O4–alizarinred nanocomposites. Nanocomposites 2:98–107

    Article  CAS  Google Scholar 

  32. Wang L, Sheng J (2014) Non-isothermal crystallization kinetics of polypropylene/attapulgite nanocomposites. J Macromol Sci B Phys 44:31–42

    Article  CAS  Google Scholar 

  33. Ma J, Zhang S, Qi Z, Li G, Hu Y (2002) Viscoelastic properties of young and old human dermis: a proposed molecular mechanism for elastic energy storage in collagen and elastin. J Appl Polym Sci 83:1978–1985

    Article  CAS  Google Scholar 

  34. Kawazu K, Nakagawa S, Ishizone T, Nojima S, Arai D, Yamaguchi K, Nakahama S (2017) Effects of bulky end groups on the crystallization kinetics of poly(ε-caprolactone) homopolymers confined in a cylindrical nanodomain. Macromolecules 50:7202–7210

    Article  CAS  Google Scholar 

  35. Wu TM, Chen EC (2006) Isothermal and non-isothermal crystallization kinetics of poly(ε-caprolactone)/multi-walled carbon nanotube composites. Polym Eng Sci 46:1309–1317

    Article  CAS  Google Scholar 

  36. Jancirani A, Kohila V, Meenarathi B, Yellilarasi A, Anbarasan R (2016) Synthesis, characterization and non-isothermal degradation kinetics of novel poly(mono ethylene glycol dimethacrylate-co-4-aminobenzoate). Bull Mater Sci 39:1725–1733

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Parthasarathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalakshmi, S., Alagesan, T., Parthasarathy, V. et al. Thermal degradation and crystallization kinetics studies on synthesized calcium mercaptosuccinate end-capped poly(ε-caprolactone) nanocomposite. Polym. Bull. 76, 4991–5009 (2019). https://doi.org/10.1007/s00289-018-2614-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2614-5

Keywords

Navigation