Skip to main content
Log in

Elastic behaviour of hybrid cross-linked epoxy-based nanocomposite reinforced with GNP and CNT: experimental and multiscale modelling

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Experimental method and multiscale modelling based on molecular dynamics simulation have been used to determine mechanical properties of carbon nanotube and graphene nanoplatelet hybrid nanocomposites. Samples containing two different mix ratios of hybrid nanofillers were subjected to tensile loading. Also, micrographs were obtained from samples fracture surfaces using field emission scanning electron microscope and SEM. These images showed that nanofillers were well dispersed in the matrix. In multiscale modelling, a new method has been developed to estimate the Young’s moduli of hybrid nanocomposite samples. To this end, atomistic modelling has been employed to investigate the mechanical properties of molecular samples at nanoscale level. In this step, epoxy cross-linked atomic models have been constructed utilizing molecular dynamics. Next, micromechanical modelling was used to bridge elastic constants of molecular samples from nanoscale to microscale. Also, the calculated Young’s moduli of the hybrid nanocomposite samples obtained from multiscale modelling were compared with experimental measurements and differences less than 7% were observed. Finally, the effects of effective fibre aspect ratio on elastic modulus of hybrid nanocomposite were investigated using the multiscale method. The results indicated an increase in hybrid nanocomposite Young’s modulus with effective fibre aspect ratio. In summary, this paper presents a new method for calculating the hybrid polymer-based nanocomposite properties using a multiscale method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yue L, Pircheraghi G, Monemian SA, Zloczower IM (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets–dispersion and synergy effects. Carbon 78:268–278

    Article  CAS  Google Scholar 

  2. Zarasvand KA, Golestanian H (2017) Investigating the effects of number and distribution of GNP layers on graphene reinforced polymer properties: physical, numerical and micromechanical methods. Compos Sci Technol 139:117–126

    Article  CAS  Google Scholar 

  3. Wang F, Wang JW, Li SQ, Xiao J (2009) Dielectric properties of epoxy composites with modified multiwalled carbon nanotubes. Polym Bull 63(1):101–110

    Article  CAS  Google Scholar 

  4. Choi YJ, Hwang SH, Hong YS, Kim JY, Ok CY, Huh W, Lee SW (2005) Preparation and characterization of PS/multi-walled carbon nanotube nanocomposites. Polym Bull 53(5–6):393–400

    Article  CAS  Google Scholar 

  5. Szeluga U, Kumanek B, Trzebicka B (2015) Synergy in hybrid polymer/nanocarbon composites. A review. Compos Part A Appl Sci Manuf 73:204–231

    Article  CAS  Google Scholar 

  6. Subhani T, Latif M, Ahmad I, Rakha SA, Ali N, Khurram AA (2015) Mechanical performance of epoxy matrix hybrid nanocomposites containing carbon nanotubes and nanodiamonds. Mater Des 87:436–444

    Article  CAS  Google Scholar 

  7. Shokrieh M, Esmkhani M, Haghighatkhah A, Zhao Z (2014) Flexural fatigue behavior of synthesized graphene/carbon-nanofiber/epoxy hybrid nanocomposites. Mater Des 62:401–408

    Article  CAS  Google Scholar 

  8. Chatterjee S, Nafezarefi F, Tai N, Schlagenhauf L, Nüesch F, Chu B (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50:5380–5386

    Article  CAS  Google Scholar 

  9. Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SM, Wang YS (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803

    Article  CAS  Google Scholar 

  10. Li W, Dichiara A, Bai J (2013) Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos Sci Technol 74:221–227

    Article  CAS  Google Scholar 

  11. Ionita M (2012) Multiscale molecular modeling of SWCNTs/epoxy resin composites mechanical behaviour. Compos Part B Eng 43:3491–3496

    Article  CAS  Google Scholar 

  12. Yu S, Yang S, Cho M (2009) Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50:945–952

    Article  CAS  Google Scholar 

  13. Odegard G, Gates T, Wise K, Park C, Siochi E (2003) Constitutive modeling of nanotube–reinforced polymer composites. Compos Sci Technol 63:1671–1687

    Article  CAS  Google Scholar 

  14. Mahboob M, Islam MZ (2013) Molecular dynamics simulations of defective CNT-polyethylene composite systems. Comput Mater Sci 79:223–229

    Article  CAS  Google Scholar 

  15. Arash B, Wang Q, Varadan V (2014) Mechanical properties of carbon nanotube/polymer composites. Sci Rep 4:6479. https://doi.org/10.1038/srep06479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alian A, Kundalwal S, Meguid S (2015) Multiscale modeling of carbon nanotube epoxy composites. Polymer 70:149–160

    Article  CAS  Google Scholar 

  17. Zarasvand KA, Golestanian H (2016) Determination of nonlinear behavior of multi-walled carbon nanotube reinforced polymer: experimental, numerical, and micromechanical. Mater Des 109:314–323

    Article  CAS  Google Scholar 

  18. ASTM D638-99 (2010) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA. www.astm.org

  19. Zarasvand KA, Golestanian H (2017) Experimental and numerical determination of compressive mechanical properties of multiwalled carbon nanotube reinforced polymer. J Polym Eng 37(4):421–431

    Google Scholar 

  20. Tack JL, Ford DM (2008) Thermodynamic and mechanical properties of epoxy resin DGEBF cross-linked with DETDA by molecular dynamics. J Mol Graph Model 26:1269–1275

    Article  CAS  PubMed  Google Scholar 

  21. Wu C, Xu W (2007) Atomistic molecular simulations of structure and dynamics of cross-linked epoxy resin. Polymer 48:5802–5812

    Article  CAS  Google Scholar 

  22. Duan W, Wang Q, Liew KM, He X (2007) Molecular mechanics modeling of carbon nanotube fracture. Carbon 45:1769–1776

    Article  CAS  Google Scholar 

  23. Aghadavoudi F, Golestanian H, Tadi Beni Y (2017) Investigating the effects of resin cross-linking ratio on mechanical properties of epoxy-based nanocomposites using molecular dynamics. Polym Compos 38:433–442

    Article  CAS  Google Scholar 

  24. Tam LH, Lau D (2014) A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials. RSC Adv 4:33074–33081

    Article  CAS  Google Scholar 

  25. Shokuhfar A, Arab B (2013) The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J Mol Model 19:3719–3731

    Article  CAS  PubMed  Google Scholar 

  26. Bandyopadhyay A, Valavala PK, Clancy TC, Wise KE, Odegard GM (2011) Molecular modeling of cross-linked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer 52:2445–2452

    Article  CAS  Google Scholar 

  27. Yang S, Qu J (2012) Computing thermomechanical properties of cross-linked epoxy by molecular dynamic simulations. Polymer 53:4806–4817

    Article  CAS  Google Scholar 

  28. Lubarda V, Chen M (2008) On the elastic moduli and compliances of transversely isotropic and orthotropic materials. J Mech Mater Struct 3:153–171

    Article  Google Scholar 

  29. Shokrieh MM, Rafiee R (2010) Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites. Compos Struct 92:2415–2420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Golestanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghadavoudi, F., Golestanian, H. & Zarasvand, K.A. Elastic behaviour of hybrid cross-linked epoxy-based nanocomposite reinforced with GNP and CNT: experimental and multiscale modelling. Polym. Bull. 76, 4275–4294 (2019). https://doi.org/10.1007/s00289-018-2602-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2602-9

Keywords

Navigation