Skip to main content

Advertisement

Log in

Grafting of niclosamide and salicylanilide onto hydrophilic polyurethane for the control of fungal and barnacle growth

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Grafting of niclosamide or salicylanilide onto polyurethane (PU) was executed to develop antifungal effectiveness and barnacle repelling capability in seawater compared with underivatized PU. The PU surface was simultaneously modified to improve the surface hydrophilicity by inserting dimethylolpropionic acid into PU frame or by grafting recycled polyols onto PU. Surface modifications of PU significantly affected its properties, such as cross-link density, tensile and shape memory properties, and flexibility under freezing conditions relative to the unmodified PU. The modification of PU surface also notably influenced the glass transition and the melting and crystallization related to soft segments. The breaking tensile stress and the shape recovery were enhanced significantly after the grafting of polyol due to chemical cross-linking, whereas the breaking tensile strain was not reduced. Some PU samples demonstrated complete antifungal effectiveness against a mixture of fungi, and barnacle growth on PU films was limited in the specifically modified PUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen W, Mook RA Jr, Premont RT, Wang J (2018) Niclosamide: beyond an antihelminthic drug. Cell Signal 41:89–96

    Article  CAS  PubMed  Google Scholar 

  2. Imperi F, Massai F, Ramachandran Pillai C, Longo F, Zennaro E, Rampioni G, Visca P, Leoni L (2013) New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother 57:996–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Satoh K, Zhang L, Zhang Y, Chelluri R, Boufraqech M, Nilubol N, Patel D, Shen M, Kebebew E (2016) Identification of Niclosamide as a novel anticancer agent for adrenocortical carcinoma. Clin Cancer Res 22:3458–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tao H, Zhang Y, Zeng X, Shulman GI, Jin S (2014) Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nat Med 20:1263–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jurgeit A, McDowell R, Moese S, Meldrum E, Schwendener R, Greber UF (2012) Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects. PLoS Pathog 8:e1002976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weinbach EC, Garbus J (1969) Mechanism of action of reagents that uncouple oxidative phosphorylation. Nature 221:1016

    Article  CAS  PubMed  Google Scholar 

  7. Williamson RL, Metcalf RL (1967) Salicylanilides: a new group of active uncouplers of oxidative phosphorylation. Science 158:1694–1695

    Article  CAS  PubMed  Google Scholar 

  8. Ma R, Ma ZG, Zhen CL, Shen X, Li SL, Li L, Zheng YF, Dong DL, Sun ZJ (2017) Design, synthesis and characterization of poly (methacrylic acid-niclosamide) and its effect on arterial function. Mater Sci Eng C 77:352–359

    Article  CAS  Google Scholar 

  9. Arkhipov IA, Sadov KM, Limova YV, Sadova AK, Varlamova AI, Khalikov SS, Dushkin AV, Chistyachenko YS (2017) The efficacy of the supramolecular complexes of niclosamide obtained by mechanochemical technology and targeted delivery against cestode infection of animals. Vet Parasitol 246:25–29

    Article  CAS  PubMed  Google Scholar 

  10. Uday Kumar S, Gopinath P (2015) Controlled delivery of bPEI–niclosamide complexes by PEO nanofibers and evaluation of its anti-neoplastic potentials. Colloid Surf B 131:170–181

    Article  CAS  Google Scholar 

  11. Fairweather M, Buray JC (1999) Fasciolicides: efficacy, actions, resistance and its management. Vet J 158:81–112

    Article  CAS  PubMed  Google Scholar 

  12. Soto-Castro D, Evangelista-Lara A, Guadarrama P (2006) Theoretical design of dendrimeric fractal patterns for the encapsulation of a family of drugs: salicylanilides. Tetrahedron 62:12116–12125

    Article  CAS  Google Scholar 

  13. Munoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339

    Article  CAS  Google Scholar 

  14. Kenawy ER, Abdel-Hay FI, El-Shanshoury AERR, El-Newehy MH (2002) Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidyl methacrylate-co-2-hydroxyethylmethacrylate) derivatives with quaternary ammonium and phosphonium salts. J Polym Sci Polym Chem 40:2384–2393

    Article  CAS  Google Scholar 

  15. Anderson EB, Long TE (2010) Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer 51:2447–2454

    Article  CAS  Google Scholar 

  16. Li MC, Wu Q, Song K, Cheng HN, Suzuki S, Lei T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustain Chem Eng 4:4385–4395

    Article  CAS  Google Scholar 

  17. Ding LP, Chi EY, Chemburu S, Ji E, Schanze KS, Lopez GP, Whitten DG (2009) Insight into the mechanism of antimicrobial poly(phenyleneethynylene) polyelectrolytes: interactions with phosphatidylglycerol lipid membranes. Langmuir 25:13742–13751

    Article  CAS  PubMed  Google Scholar 

  18. Huang S, Zhou L, Li MC, Wu Q, Kojima Y, Zhou D (2016) Preparation and properties of electrospun poly (vinyl pyrrolidone)/cellulose nanocrystal/silver nanoparticle composite fibers. Materials 9:523–536

    Article  CAS  PubMed Central  Google Scholar 

  19. Spontak RJ, Patel NP (2000) Thermoplastic elastomers: fundamentals and applications. Curr Opin Colloid Interface 5:333–340

    Article  Google Scholar 

  20. Petrović ZS, Ferguson J (1991) Polyurethane elastomers. Prog Polym Sci 16:695–836

    Article  Google Scholar 

  21. Tan K, Obendorf SK (2006) Surface modification of microporous polyurethane membrane with poly (ethylene glycol) to develop a novel membrane. J Membr Sci 274:150–158

    Article  CAS  Google Scholar 

  22. Chung YC, Kim HY, Choi JW, Chun BC (2015) Modification of polyurethane by graft polymerization of poly(acrylic acid) for the control of molecular interaction and water compatibility. Polym Bull 72:2685–2703

    Article  CAS  Google Scholar 

  23. Chung YC, Kim HY, Choi JW, Chun BC (2017) Effect of the ionized carboxyl group on the water compatibility and the antifungal activity of the benzimidazole-grafted polyurethane. Polym Bull 74:3721–3737

    Article  CAS  Google Scholar 

  24. Huang CY, Lu WL, Feng YC (2003) Effect of plasma treatment on the AAc grafting percentage of high-density polyethylene. Surf Coat Tech 167:1–10

    Article  CAS  Google Scholar 

  25. Kim SR (2000) Surface modification of poly(tetrafluoroethylene) film by chemical etching, plasma, and ion beam treatments. J Appl Polym Sci 77:1913–1920

    Article  CAS  Google Scholar 

  26. Koh SK, Park SC, Kim SR, Choi WK, Jung HJ (1997) Surface modification of polytetrafluoroethylene by Ar + irradiation for improved adhesion to other materials. J Appl Polym Sci 64:1913–1921

    Article  CAS  Google Scholar 

  27. Chung YC, Kim HY, Choi JW, Chun BC (2015) Preparation of water-compatible antifungal polyurethane with grafted benzimidazole as the antifungal agent. J Appl Polym Sci 132:41676–41684

    Article  CAS  Google Scholar 

  28. Alves P, Coelho JFJ, Haack J, Rota A, Bruinink A, Gil MH (2009) Surface modification and characterization of thermoplastic polyurethane. Eur Polym J 45:1412–1419

    Article  CAS  Google Scholar 

  29. Freij-Larsson C, Wesslen B (1993) Grafting of polyurethane surfaces with poly (ethylene glycol). J Appl Polym Sci 50:345–352

    Article  CAS  Google Scholar 

  30. Archambault JG, John L (2004) Protein resistant polyurethane surfaces by chemical grafting of PEO: amino-terminated PEO as grafting reagent. Colloid Surf B 39:9–16

    Article  CAS  Google Scholar 

  31. Huang J, Xu W (2010) Zwitterionic monomer graft copolymerization onto polyurethane surface through a PEG spacer. Appl Surf Sci 256:3921–3927

    Article  CAS  Google Scholar 

  32. Choi T, Weksler J, Padsalgikar A, Runt J (2010) Microstructural organization of polydimethylsiloxane soft segment polyurethanes derived from a single macrodiol. Polymer 51:4375–4382

    Article  CAS  Google Scholar 

  33. Russo P, Lavorgna M, Piscitelli F, Acierno D, Di Maio L (2013) Thermoplastic polyurethane films reinforced with carbon nanotubes: the effect of processing on the structure and mechanical properties. Eur Polym J 49:379–388

    Article  CAS  Google Scholar 

  34. Chung YC, Choi JW, Chung HM, Chun BC (2012) The MDI-mediated lateral crosslinking of polyurethane copolymer and the impact on tensile properties and shape memory effect. Bull Korean Chem Soc 33:692–694

    Article  CAS  Google Scholar 

  35. Chung YC, Kim HY, Yu JH, Chun BC (2015) Impact of cholesterol grafting on molecular interactions and low temperature flexibility of polyurethanes. Macromol Res 23:350–359

    Article  CAS  Google Scholar 

  36. Chung YC, Lee BH, Jo SH, Chun BC (2015) Preparation and characterization of polyurethane copolymer grafted with polystyrene side chains. Polym-Plast Technol 54:1066–1076

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01014308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Chul Chun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, YC., Kim, G.Y., Kim, D.E. et al. Grafting of niclosamide and salicylanilide onto hydrophilic polyurethane for the control of fungal and barnacle growth. Polym. Bull. 76, 2041–2060 (2019). https://doi.org/10.1007/s00289-018-2481-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2481-0

Keywords

Navigation