Skip to main content
Log in

Acid/light dual-responsive biodegradable polymeric nanocarriers for efficient intracellular drug delivery

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel amphiphilic acid/light dual-cleavable diblock copolymer poly(ε-caprolactone)-acetal-nitrobenzyl ester-poly(ethylene glycol) (PCL-PEG) was prepared via the ring-opening polymerization of ε-caprolactone using 5-propargylether-2-nitrobenzyl alcohol as the initiator and subsequent “click” coupling reaction with azide-terminated poly(ethylene glycol) containing acetal group. Both light-cleavable o-nitrobenzyl methyl ester (ONB) and acid-labile acetal were used as the linkages in between the hydrophilic and hydrophobic polymer blocks. In aqueous solution, the copolymer self-assembled into the spherical polymeric nanoparticles, which were stable under physiological conditions and retained the anticancer drug doxorubicin (DOX) inside. Triggered by acid or UV irradiation, the DOX release rate was significantly enhanced, due to the correspondent degradation of acetal or ONB linkages under the stimulus. In addition, confocal laser scanning microscopy studies further demonstrated the DOX-loaded nanodrug could be efficiently taken up by HeLa cells and exhibited the enhanced DOX release into the cytoplasm upon UV irradiation. Furthermore, in vitro cytotoxicity study verified UV irradiation could improve the antitumor efficacy of the nanodrug against HeLa cells. Thus, this work provides a new method of the design of dual-responsive biodegradable polymers for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    Article  CAS  PubMed  Google Scholar 

  2. Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, Searson PC (2014) State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release 187:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discovery 7:771

    Article  CAS  PubMed  Google Scholar 

  5. Meng F, Cheng R, Deng C, Zhong Z (2012) Intracellular drug release nanosystems. Mater Today 15:436–442

    Article  CAS  Google Scholar 

  6. Cheng R, Meng F, Deng C, Zhong Z (2015) Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today 10:656–670

    Article  CAS  Google Scholar 

  7. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    Article  CAS  Google Scholar 

  8. Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC (2015) Stimuli-Responsive nanomaterials for biomedical applications. J Am Chem Soc 137:2140–2154

    Article  CAS  PubMed  Google Scholar 

  9. Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z (2016) Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85:152–167

    Article  CAS  PubMed  Google Scholar 

  10. Ma X, Shi X, Bai S, Gao Y-E, Hou M, Han M-Y, Xu Z (2018) Acid-activatable doxorubicin prodrug micelles with folate-targeted and ultra-high drug loading features for efficient antitumor drug delivery. J Mater Sci 53:892–907

    Article  CAS  Google Scholar 

  11. Meng F, Hennink WE, Zhong Z (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30:2180–2198

    Article  CAS  PubMed  Google Scholar 

  12. Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42:7214–7243

    Article  CAS  PubMed  Google Scholar 

  13. Liu G, Liu W, Dong C-M (2013) UV- and NIR-responsive polymeric nanomedicines for on-demand drug delivery. Polym Chem 4:3431–3443

    Article  CAS  Google Scholar 

  14. Zhang Y, Qu Q, Li M, Zhao Y (2015) Intracellular reduction-responsive sheddable copolymer micelles for targeted anticancer drug delivery. Asian J Org Chem 4:226–232

    Article  CAS  Google Scholar 

  15. Zhu Y, Zhang J, Meng F, Deng C, Cheng R, Feijen J, Zhong Z (2016) cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. J Control Release 233:29–38

    Article  CAS  PubMed  Google Scholar 

  16. Chen M, Gao C, Lu S, Chen Y, Liu M (2016) Dual redox-triggered shell-sheddable micelles self-assembled from mPEGylated starch conjugates for rapid drug release. RSC Adv 6:9164–9174

    Article  CAS  Google Scholar 

  17. Zhang Y, Teh C, Li M, Ang CY, Tan SY, Qu Q, Korzh V, Zhao Y (2016) Acid-responsive polymeric doxorubicin prodrug nanoparticles encapsulating a near-infrared dye for combined photothermal-chemotherapy. Chem Mater 28:7039–7050

    Article  CAS  Google Scholar 

  18. Ga M, Sk C, Henry LJK, Natesan S, Kandasamy R (2017) Atrial natriuretic peptide-conjugated chitosan-hydrazone-mPEG copolymer nanoparticles as pH-responsive carriers for intracellular delivery of prednisone. Carbohydr Polym 157:1677–1686

    Article  CAS  Google Scholar 

  19. Wang H, He J, Zhang M, Tao Y, Li F, Tam KC, Ni P (2013) Biocompatible and acid-cleavable poly(ε-caprolactone)-acetal-poly(ethylene glycol)-acetal-poly(ε-caprolactone) triblock copolymers: synthesis, characterization and pH-triggered doxorubicin delivery. J Mater Chem B 1(48):6596–6607

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Liu G, Wang X, Hu J, Zhang G, Liu S (2015) Acid-disintegratable polymersomes of pH-responsive amphiphilic diblock copolymers for intracellular drug delivery. Macromolecules 48:7262–7272

    Article  CAS  Google Scholar 

  21. Satoh K, Poelma JE, Campos LM, Stahl B, Hawker CJ (2012) A facile synthesis of clickable and acid-cleavable PEO for acid-degradable block copolymers. Polym Chem 3:1890–1898

    Article  CAS  Google Scholar 

  22. Qiu L, Zhu M, Gong K, Peng H, Ge L, Zhao L, Chen J (2017) pH-triggered degradable polymeric micelles for targeted anti-tumor drug delivery. Mater Sci Eng, C 78:912–922

    Article  CAS  Google Scholar 

  23. Hu L, Zhang P, Wang X, Cheng X, Qin J, Tang R (2017) pH-sensitive carboxymethyl chitosan hydrogels via acid-labile ortho ester linkage for potential biomedical applications. Carbohydr Polym 178:166–179

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Y (2012) Light-responsive block copolymer micelles. Macromolecules 45:3647–3657

    Article  CAS  Google Scholar 

  25. Xiao P, Zhang J, Zhao J, Stenzel MH (2017) Light-induced release of molecules from polymers. Prog Polym Sci 74:1–33

    Article  CAS  Google Scholar 

  26. Jiang J, Tong X, Zhao Y (2005) A new design for light-breakable polymer micelles. J Am Chem Soc 127:8290–8291

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Ang CY, Li M, Tan SY, Qu Q, Luo Z, Zhao Y (2015) Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery. ACS Appl Mater Interfaces 7:18179–18187

    Article  CAS  PubMed  Google Scholar 

  28. Gupta MK, Balikov DA, Lee Y, Ko E, Yu C, Chun YW, Sawyer DB, Kim WS, Sung H-J (2017) Gradient release of cardiac morphogens by photo-responsive polymer micelles for gradient-mediated variation of embryoid body differentiation. J Mater Chem B 5:5206–5217

    Article  PubMed  Google Scholar 

  29. Fan W, Tong X, Yan Q, Fu S, Zhao Y (2014) Photodegradable and size-tunable single-chain nanoparticles prepared from a single main-chain coumarin-containing polymer precursor. Chem Commun 50:13492–13494

    Article  CAS  Google Scholar 

  30. Jin Q, Cai T, Han H, Wang H, Wang Y, Ji J (2014) Light and pH dual-degradable triblock copolymer micelles for controlled intracellular drug release. Macromol Rapid Commun 35:1372–1378

    Article  CAS  PubMed  Google Scholar 

  31. Yang L, Lei M, Zhao M, Yang H, Zhang H, Li Y, Zhang K, Lei Z (2017) Synthesis of the light/pH responsive polymer for immobilization of α-amylase. Mater Sci Eng C 71:75–83

    Article  CAS  Google Scholar 

  32. Veccharelli KM, Tong VK, Young JL, Yang J, Gianneschi NC (2016) Dual responsive polymeric nanoparticles prepared by direct functionalization of polylactic acid-based polymers via graft-from ring opening metathesis polymerization. Chem Commun 52:567–570

    Article  CAS  Google Scholar 

  33. Meng L, Huang W, Wang D, Huang X, Zhu X, Yan D (2013) Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery. Biomacromolecules 14:2601–2610

    Article  CAS  PubMed  Google Scholar 

  34. John JV, Uthaman S, Augustine R, Manickavasagam Lekshmi K, Park I-K, Kim I (2017) Biomimetic pH/redox dual stimuli-responsive zwitterionic polymer block poly(l-histidine) micelles for intracellular delivery of doxorubicin into tumor cells. J Polym Sci Part A Polym Chem 55:2061–2070

    Article  CAS  Google Scholar 

  35. Cheng R, Meng F, Deng C, Klok H-A, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657

    Article  CAS  PubMed  Google Scholar 

  36. He X, Liang F, Wang F, Zou L, Wang J, Tang C, Zhao K, Wei D (2018) Targeted delivery and thermo/pH-controlled release of doxorubicin by novel nanocapsules. J Mater Sci 53:2326–2336

    Article  CAS  Google Scholar 

  37. Petrova S, Jager E, Konefal R, Jager A, Venturini CG, Spevacek J, Pavlova E, Stepanek P (2014) Novel poly(ethylene oxide monomethyl ether)-b-poly(ε-caprolactone) diblock copolymers containing a pH-acid labile ketal group as a block linkage. Polym Chem 5:3884–3893

    Article  CAS  Google Scholar 

  38. Sun H, Guo B, Cheng R, Meng F, Liu H, Zhong Z (2009) Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 30:6358–6366

    Article  CAS  PubMed  Google Scholar 

  39. Binder WH, Sachsenhofer R (2008) ‘Click’ chemistry in polymer and material science: an update. Macromol Rapid Commun 29:952–981

    Article  CAS  Google Scholar 

  40. Golas PL, Matyjaszewski K (2010) Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem Soc Rev 39:1338–1354

    Article  CAS  PubMed  Google Scholar 

  41. Schumers J-M, Gohy J-F, Fustin C-A (2010) A versatile strategy for the synthesis of block copolymers bearing a photocleavable junction. Polym Chem 1(2):161–163

    Article  CAS  Google Scholar 

  42. Yuan Y-Y, Wang Y-C, Du J-Z, Wang J (2008) Synthesis of amphiphilic ABC 3-miktoarm star terpolymer by combination of ring-opening polymerization and “click” chemistry. Macromolecules 41:8620–8625

    Article  CAS  Google Scholar 

  43. Cabane E, Malinova V, Meier W (2010) Synthesis of photocleavable amphiphilic block copolymers: toward the design of photosensitive nanocarriers. Macromol Chem Phys 211:1847–1856

    Article  CAS  Google Scholar 

  44. Bochet CG (2002) Photolabile protecting groups and linkers. J Chem Soc Perkin Trans 1(2):125–142

    Google Scholar 

  45. Hrubý M, Koňák Č, Ulbrich K (2005) Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control Release 103:137–148

    Article  CAS  PubMed  Google Scholar 

  46. Wang D, Su Y, Jin C, Zhu B, Pang Y, Zhu L, Liu J, Tu C, Yan D, Zhu X (2011) Supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases for drug delivery. Biomacromolecules 12:1370–1379

    Article  CAS  PubMed  Google Scholar 

  47. Gewirtz D (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province, China (BK20171263), China Postdoctoral Science Foundation (2018M630548), Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (KYCX18_2603) and the Lianyungang Industry Prospect and Common Key Technologies Program (No. CG1602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cao, X., Liang, T. et al. Acid/light dual-responsive biodegradable polymeric nanocarriers for efficient intracellular drug delivery. Polym. Bull. 76, 1775–1792 (2019). https://doi.org/10.1007/s00289-018-2470-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2470-3

Keywords

Navigation