Skip to main content
Log in

Effect of PEDOT:PSS content on structure and properties of PEDOT:PSS/poly(vinyl alcohol) composite fiber

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, effect of PEDOT:PSS content on structure and properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/poly(vinyl alcohol) (PVA) composite conducting fiber was systematically investigated for the first time. PEDOT:PSS/PVA composite conducting fibers with various PEDOT:PSS loadings were successfully fabricated via wet-spinning technique. Correlation between PEDOT:PSS loading and performance of composite fibers was investigated by analyzing changes in chemical constitution, morphology, thermal property, conductivity, and tensile property of composite fibers. Formation of hydrogen bonding interactions was observed between PVA matrix and PEDOT:PSS conducting filler, and the interaction was enhanced with increasing PEDOT:PSS loading. As PEDOT:PSS loading increased in composite fiber, fiber conductivity increased monotonically, and surface morphology of composite fibers became regularly circular. Young’s modulus and tensile strength of composite fibers also increased with increasing PEDOT:PSS loading, while elongation at break decreased. In addition, thermal stability of composite fibers improved with increasing PEDOT:PSS loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou J, Li EQ, Li R, Xu XZ, Ventura IA, Moussawi A et al (2015) Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers. J Mater Chem C 3(11):2528–2538

    Article  CAS  Google Scholar 

  2. Ding Y, Invernale MA, Sotzing GA (2010) Conductivity trends of PEDOT-PSS impregnated fabric and the effect of conductivity on electrochromic textile. ACS Appl Mater Interfaces 2(6):1588–1593

    Article  CAS  PubMed  Google Scholar 

  3. Jalili R, Razal JM, Innis PC, Wallace GG (2011) One-step wet-spinning process of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Func Mater 21(17):3363–3370

    Article  CAS  Google Scholar 

  4. Wang CY, Mottaghitalab V, Too CO, Spinks GM, Wallace GG (2007) Polyaniline and polyaniline–carbon nanotube composite fibres as battery materials in ionic liquid electrolyte. J Power Sources 163(2):1105–1109

    Article  CAS  Google Scholar 

  5. Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 19(6):689–706

    Article  CAS  Google Scholar 

  6. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12(7):481–494

    Article  CAS  Google Scholar 

  7. Trivedi DC, Nalwa HS (1997) Handbook of organic conductive molecules and polymers, vol 2. Wiley, New York, pp 505–572

    Google Scholar 

  8. Focke WW, Wnek GE, Wei Y (1987) Influence of oxidation state, pH, and counterion on the conductivity of polyaniline. J Phys Chem 91(22):5813–5818

    Article  CAS  Google Scholar 

  9. Lux F (1998) Polyaniline auf demPrüfstand. Farbe + Lack 104(8):32

    CAS  Google Scholar 

  10. Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S et al (2017) A highly stretchable, transparent, and conductive polymer. Sci Adv 3(3):e1602076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choong CL, Shim MB, Lee BS, Jeon S, Ko DS, Kang TH et al (2014) Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26(21):3451–3458

    Article  CAS  PubMed  Google Scholar 

  12. Okuzaki H, Harashina Y, Yan H (2009) Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polymer J 45(1):256–261

    Article  CAS  Google Scholar 

  13. Wang X, Ge MQ, Feng GY (2015) The effects of DMSO on structure and properties of PVA/PEDOT:PSS blended fiber. Fibers Polym 16(12):2578–2585

    Article  CAS  Google Scholar 

  14. Wang X, Feng GY, Ge MQ (2017) Influence of ethylene glycol vapor annealing on structure and property of wet-spun PVA/PEDOT:PSS blend fiber. J Mater Sci 52(12):6917–6927

    Article  CAS  Google Scholar 

  15. Pandey M, Joshi GM, Deshmukh K, Ghosh NN, Raj NAN (2015) Electrical conductivity, optical properties and mechanical stability of 3, 4, 9, 10-perylenetetracarboxylic dianhidride based organic semiconductor. J Phys Chem Solids 80:52–61

    Article  CAS  Google Scholar 

  16. Patra N, Martinová L, Stuchlik M, Černík M (2015) Structure–property relationships in Sterculiaurens/polyvinyl alcohol electrospun composite nanofibres. Carbohyd Polym 120:69–73

    Article  CAS  Google Scholar 

  17. Xu S, Liu C, Xiao Z, Zhong W, Luo Y, Ou H et al (2017) Cooperative effect of carbon black and dimethyl sulfoxide on PEDOT:PSS hole transport layer for inverted planar perovskite solar cells. Sol Energy 157:125–132

    Article  CAS  Google Scholar 

  18. Lei Y, Oohata H, Kuroda SI, Sasaki S, Yamamoto T (2005) Highly electrically conductive poly (3, 4-ethylenedioxythiophene) prepared via high-concentration emulsion polymerization. Synth Met 149(2):211–217

    Article  CAS  Google Scholar 

  19. Ely F, Matsumoto A, Zoetebier B, Peressinotto VS, Hirata MK, de Sousa DA et al (2014) Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices. Org Electron 15(5):1062–1070

    Article  CAS  Google Scholar 

  20. Stefanescu EA, Tan X, Lin Z, Bowler N, Kessler MR (2011) Multifunctional fiberglass-reinforced PMMA-BaTiO3 structural/dielectric composites. Polymer 52(9):2016–2024

    Article  CAS  Google Scholar 

  21. Zhou H, Han G, Chang Y, Fu D, Xiao Y (2015) Highly stable multi-wall carbon nanotubes@ poly (3, 4-ethylenedioxythiophene)/poly (styrene sulfonate) core–shell composites with three-dimensional porous nano-network for electrochemical capacitors. J Power Sources 274:229–236

    Article  CAS  Google Scholar 

  22. Balamurugan A, Ho KC, Chen SM (2009) One-pot synthesis of highly stable silver nanoparticles-conducting polymer nanocomposite and its catalytic application. Synth Met 159(23):2544–2549

    Article  CAS  Google Scholar 

  23. Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X et al (2009) A hybrid material of graphene and poly (3, 4-ethyldioxythiophene) with high conductivity, flexibility, and Transparency. Nano Res 2:343–348

    Article  CAS  Google Scholar 

  24. Zhang H, Xu J, Wen Y, Wang Z, Zhang J, Ding W (2015) Conducting poly (3, 4-ethylenedioxythiophene): poly (styrene-sulfonate) film electrode with superior long-term electrode stability in water and synergistically enhanced electrocatalytic ability for application in electrochemical sensors. Synth Met 204:39–47

    Article  CAS  Google Scholar 

  25. Lee JH, Jung JP, Jang E, Lee KB, Hwang YJ, Min BK et al (2016) PEDOT-PSS embedded comb copolymer membranes with improved CO2 capture. J Membr Sci 518:21–30

    Article  CAS  Google Scholar 

  26. Yu DS, Kuila T, Kim NH, Lee JH (2014) Enhanced properties of aryl diazonium salt-functionalized graphene/poly (vinyl alcohol) composites. Chem Eng J 245:311–322

    Article  CAS  Google Scholar 

  27. Yang CC, Chien WC, Li YJ (2010) Direct methanol fuel cell based on poly (vinyl alcohol)/titanium oxide nanotubes/poly (styrene sulfonic acid)(PVA/nt-TiO 2/PSSA) composite polymer membrane. J Power Sources 195(11):3407–3415

    Article  CAS  Google Scholar 

  28. Shen B, Zhai W, Lu D, Wang J, Zheng W (2012) Ultrasonication-assisted direct functionalization of graphene with macromolecules. RSC Adv 2(11):4713–4719

    Article  CAS  Google Scholar 

  29. Seyedin MZ, Razal JM, Innis PC, Wallace GG (2014) Strain-responsive polyurethane/PEDOT:PSS elastomeric composite fibers with high electrical conductivity. Adv Func Mater 24(20):2957–2966

    Article  CAS  Google Scholar 

  30. Stauffer D, Aharony A (1994) Introduction to percolation theory. CRC Press, Boca Raton

    Google Scholar 

  31. StruMpler R, Glatz-Reichenbach J (1999) Feature article conducting polymer composites. J Electroceram 3(4):329–346

    Article  CAS  Google Scholar 

  32. Akiba I, Masunaga H, Sasaki K, Shikasho K, Sakurai K (2004) Nanostructured polymer blend formed from poly (N-vinylpyrrolidone) and end-functional polystyrene. Polymer 45(17):5761–5764

    Article  CAS  Google Scholar 

  33. Jalili R, Razal JM, Wallace GG (2012) Exploiting high quality PEDOT:PSS–SWNT composite formulations for wet-spinning multifunctional fibers. J Mater Chem 22(48):25174–25182

    Article  CAS  Google Scholar 

  34. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498

    Article  CAS  Google Scholar 

  35. Mishra SP (2000) A text book of fibre science and technology. New Age International, New Delhi

    Google Scholar 

  36. Gaur SS, Dhar P, Sonowal A, Sharma A, Kumar A, Katiyar V (2017) Thermo-mechanically stable sustainable polymer based solid electrolyte membranes for direct methanol fuel cell applications. J Membr Sci 526(5):348–354

    Article  CAS  Google Scholar 

  37. Mooney M (1951) The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 6(2):162–170

    Article  CAS  Google Scholar 

  38. Lewis TB, Nielsen LE (1970) Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci 14(6):1449–1471

    Article  CAS  Google Scholar 

  39. Ahmed S, Jones FR (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci 25(12):4933–4942

    Article  CAS  Google Scholar 

  40. Rao Y, Pochan JM (2007) Mechanics of polymer − clay nanocomposites. Macromolecules 40(2):290–296

    Article  CAS  Google Scholar 

  41. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng 39(6):933–961

    Article  CAS  Google Scholar 

  42. Brodnyan JG (1959) The concentration dependence of the Newtonian viscosity of prolate ellipsoids. Trans Soc Rheol 3(1):61–68

    Article  CAS  Google Scholar 

  43. Torabi B, Ameri E (2016) Methyl acetate production by coupled esterification-reaction process using synthesized cross-linked PVA/silica nanocomposite membranes. Chem Eng J 288:461–472

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High-tech Research and Development Program of China (No. 2016YFB0302901-3), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Nos. KYCX17_1142 and KYCX17_1439) and the Postgraduate Research and Innovation Program of Jiangsu Province (Nos. KYCX17_1439, KYCX17_1442).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-qiao Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xy., Feng, Gy., Li, Mj. et al. Effect of PEDOT:PSS content on structure and properties of PEDOT:PSS/poly(vinyl alcohol) composite fiber. Polym. Bull. 76, 2097–2111 (2019). https://doi.org/10.1007/s00289-018-2459-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2459-y

Keywords

Navigation